Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430447

RESUMO

Helicobacter pylori stands as a significant risk factor for both peptic and stomach ulcers. Their resistance to the highly acidic host environment primarily stems from their capability to produce urease, an enzyme that rapidly converts urea into NH3 and CO2. These byproducts are crucial for the bacterium's survival under such harsh conditions. Given the pivotal role of medicinal plants in treating various ailments with minimal side effects, there is an urgent need for a natural drug that can effectively eliminate H. pylori by inhibiting urease. Hence, the current study aims to identify the most potent urease inhibitor among the natural compounds found in Middle Eastern medicinal plants, taking into consideration factors such as optimal affinity, drug-like properties, pharmacokinetic characteristics, and thermodynamic attributes. In total, 5599 ligand conformers from 151 medicinal plants were subjected to docking against the urease's active site. The top-ranking natural compounds, as determined by their high docking scores, were selected for further analysis. Among these compounds, D-glucosamine (PubChem code 439,213) exhibited the most interactions with the crucial amino acid residues in the urease's active site. Furthermore, D-glucosamine demonstrated superior absorption, distribution, metabolism, excretion, and toxicity properties compared to other top-ranked candidates. Molecular dynamics simulations conducted over 100 nanoseconds revealed stable root mean square deviations and fluctuations of the protein upon complexation with D-glucosamine. Additionally, the radius of gyration and solvent-accessible surface area values for the D-glucosamine-urease complex were notably lower than those observed in other typical urease-inhibitor complexes. In conclusion, this study provides valuable insights into the potential development of D-glucosamine as a novel urease inhibitor. This promising compound holds the potential to serve as an effective drug for combating H. pylori infections in the near future.

2.
Chem Biodivers ; : e202401754, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316731

RESUMO

Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2021-2053, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37837473

RESUMO

The Oldenlandia genus comprises approximately 240 species of plants, yet only a limited number of these have been investigated for their chemical composition and medicinal properties. These species contain a wide range of compounds such as iridoids, anthraquinones, triterpenes, phytosterols, flavonoids, anthocyanidins, vitamins, essential oils, phenolic acids, and coumarins. These diverse phytochemical profiles underscore the pharmacological potential of Oldenlandia plants for various medical purposes. Among other chemical constituents, ursolic acid stands out as the most important active compound in Oldenlandia, owing to its proven anticancer, anti-inflammatory, antimicrobial, and hepatoprotective properties. The evaluation of Oldenlandia's pharmacological prospects indicates that the holistic utilization of the entire plant yields the most significant effects. Oldenlandia diffusa showcases anticancer and anti-inflammatory capabilities attributed to its varying constituents. Across a broad spectrum of pharmacological capacities, anticancer research predominates, constituting the majority of medical uses. Oldenlandia diffusa emerges as a standout for its remarkable anticancer effects against diverse malignancies. Antioxidant applications follow, with O. corymbosa demonstrating potent antioxidant properties alongside O. umbellata and O. diffusa. Subsequent priority lies in anti-inflammatory studies, wherein O. diffusa exhibits noteworthy efficacy, trailed by O. corymbosa also takes the lead in antimicrobial activity, with O. umbellata as a strong contender. Additional investigation is essential to ascertain the relative significance of these species in various pharmacological applications. This comprehensive assessment underscores the multifaceted potential of Oldenlandia as a versatile herbal resource, offering diverse pharmacological capacities. The call for sustained exploration and research remains essential to unlock the full extent of Oldenlandia's medicinal benefits.


Assuntos
Anti-Infecciosos , Oldenlandia , Oldenlandia/química , Antioxidantes , Iridoides , Compostos Fitoquímicos , Anti-Inflamatórios , Extratos Vegetais/farmacologia
4.
Mol Biotechnol ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097539

RESUMO

Monkeypox is an infectious disease resulting from the monkeypox virus, and its fatality rate varies depending on the virus clade and the location of the outbreak. In monkeypox virus, methyltransferase (MTase) plays a crucial role in modifying the cap structure of viral mRNA. This alteration assists the virus in evading the host's immune system, enhances viral protein synthesis, and ultimately enables successful infection and replication within host cells. Given the significance of MTase in viral infection and spread within the host, our study aimed to identify a natural inhibitor for this enzyme using docking and molecular dynamic (MD) simulations. We collected a total of 12,971 natural compounds from 200 medicinal plants in the Middle East. After eliminating duplicate compounds, we had 5,749 unique ligand conformers, which we then subjected to high-throughput virtual screening against MTase. The most promising hits were further evaluated using the extra-precision (XP) tool. The affinity of these hits was also assessed by Prime-Molecular Mechanics/Generalized Born Surface Area (MMGBSA) tool. The analysis revealed that two standard controls (sinefungin and TO1119) and two Middle-Eastern compounds (folic acid and 1,2,4,6-tetragalloylglucose) exhibited the best XP docking scores. According to Prime MMGBSA calculations, the Middle-Eastern compounds showed higher affinities, with values of - 60.61 kcal/mol for 1,2,4,6-tetragalloylglucose and - 51.87 kcal/mol for folic acid, surpassing the controls (TO1119 at - 35.71 kcal/mol and sinefungin at - 31.51 kcal/mol). In the majority of Molecular dynamic (MD) simulations, folic acid exhibited demonstrated greater stability than sinefungin. Further investigation revealed that folic acid occupied a critical position in the active site of MTase, which reduced its interaction with the mRNA substrate. Based on these findings, it can be concluded that folic acid is a highly promising natural compound for potential use in the cost-effective treatment of monkeypox virus. The identification of folic acid as a potential antiviral agent highlights the importance of nature in providing new therapeutic uses that have significant implications for global health, particularly in regions where monkeypox viral outbreaks are prevalent. However, it is essential to note that further wet-lab validations are necessary to confirm its efficacy for treatment in a medical context.

5.
J Biomol Struct Dyn ; 41(6): 2355-2367, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35067202

RESUMO

Main protease (Mpro) is a critical enzyme in the life cycle of severe acute respiratory syndrome Coronavirus -2 (SARS-CoV-2). Due to its essential role in the maturation of the polyproteins, the necessity to inhibit Mpro is one of the essential means to prevent the outbreak of COVID-19. In this context, this study was conducted on the natural compounds of medicinal plants that are commonly available in the Middle East to find out the most potent one to inhibit Mpro with the best bioavailability and druglikeness properties. A total of 3392 compounds of sixty-six medicinal plants were retrieved from PubChem database and docked against Mpro. Thirty compounds with the highest docking scores with Mpro were chosen for further virtual screening. Variable druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened compounds, artecanin was predicted to exhibit the most favourable druglikeness potentials, accompanied by no predicted hepatoxicity, carcinogenicity, mutagenicity, and cytotoxicity. Molecular dynamics (MD) simulations showed that Mpro-artecanin complex exhibited comparable stability with that observed in the ligand-free Mpro. This study revealed for the first time that artecanin from Laurus nobilis provided a novel static and dynamic inhibition for Mpro with excellent safety, oral bioavailability, and pharmacokinetic profile. This study suggested the ability of artecanin to be used as a potential natural inhibitor that can be used to block or at least counteract the SARS-CoV-2 invasion.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Laurus , SARS-CoV-2 , Proteases 3C de Coronavírus , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular
6.
J Biomol Struct Dyn ; : 1-13, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671847

RESUMO

Resistin is a cysteine-rich secretory hormone that induces resistance to insulin, and its elevated expression is correlated with the onset of diabetes and several related metabolic disorders. Resistin performs its inhibitory role by connecting three identical subunits through Cys22-based disulfide linkages. The necessity to inhibit the formation of resistin trimer is one of the essential means to prevent the aggravation of diabetes mellitus type 2, obesity, and atherosclerosis. This study was conducted to screen the clinically approved drugs to find the most potent one to inhibit resistin with the best pharmacokinetics and drug-likeness properties. A total of 4654 clinically approved drugs were docked against the Cys22 residue of resistin. The top ten drugs with the highest high-precision (XP) docking scores were selected. Ioversol and masoprocol showed the highest XP docking and Molecular Mechanics-Generalized Born Surface Area (MMGBSA) scores, respectively, with double hydrogen bonding with the targeted Cys22. Molecular dynamics (MD) simulations showed that the masoprocol-resistin complex exhibited lower root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) values than those observed in the ioversol-resistin complex. Both drugs induced drastic conformational changes in resistin monomer interactions. However, ioversol did not prove satisfying drug-likeness properties, while masoprocol showed the most favourable pharmacokinetic and drug-likeness properties. This study has demonstrated that masoprocol offers a novel inhibitory effect on resistin with the highest ligand affinity, making it a promising drug for combating insulin resistance.Communicated by Ramaswamy H. Sarma.

7.
J Biomol Struct Dyn ; : 1-19, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965722

RESUMO

The severity of the influenza virus infection is largely determined by its ability to invade the human host receptor. This critical step is conducted by utilizing hemagglutinin (HA) due to its binding with sialic acid 2,6 (SA). Though 18 subtypes (H1-H18) of HA have been identified, the most efficient one for conducting the host entry has not yet been resolved. This study aims to assess the severity of infections for HA variants by conducting a comparative docking of H1-H18 with the human SA receptor. Eighteen viral 3D structures were retrieved, minimized, and optimized for docking with human SA. In all retrieved structures, five conserved amino acid residues were selected for docking with human SA. Special protein grids were prepared by locating these five residues in the 18 selected subtypes. Results showed that H3 and H8 exerted the highest standard precision and extra precision docking scores, and the highest binding affinities with the human SA, respectively. Phylogenetic analyses confirmed the actual positioning of the selected 3D structures and showed these docked structures belonged to their usual classes due to the extremely close distances found in each docked subtype compared with its corresponding non-docked structures. H8-SA showed slightly better RMSD and SASA values than H3-SA, while H3-SIA showed more favourable radius of gyration scores than H8-SIA in the majority of the simulation period. Due to the highest affinity of binding of H3 and H8 with the human receptor, special caution should be exercised regarding any possible outbreak mediated by these subtypes in human populations. However, it is important to acknowledge a limitation inherent to the computational approach; it may hold relative rather than absolute significance. Further research is needed to deepen our understanding of the intricate interplay between HA variants and the host receptor, taking into account the broader context of viral infection dynamics.Communicated by Ramaswamy H. Sarma.

8.
Comput Biol Med ; 141: 105155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942397

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the first target of SARS-CoV-2 and a key functional host receptor through which this virus hooks into and infects human cells. The necessity to block this receptor is one of the essential means to prevent the outbreak of COVID-19. This study was conducted to determine the most eligible natural compound to suppress ACE2 to counterfeit its interaction with the viral infection. To do this, the most known compounds of sixty-six Iraqi medicinal plants were generated and retrieved from PubChem database. After preparing a library for Iraqi medicinal plants, 3663 unique ligands' conformers were docked to ACE2 using the GLIDE tool. Results found that twenty-three compounds exhibited the highest binding affinity with ACE2. The druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened twenty-three compounds, epicatechin and kempferol were predicted to exert the highest druglikeness and lowest toxicity potentials. Extended Molecular dynamics (MD) simulations showed that ACE2-epicatechin complex exhibited a slightly higher binding stability than ACE2-kempferol complex. In addition to the well-known ACE2 inhibitors that were identified in previous studies, this study revealed for the first time that epicatechin from Hypericum perforatum provided a better static and dynamic inhibition for ACE2 with highly favourable pharmacokinetic properties than the other known ACE2 inhibiting compounds. This study entailed the ability of epicatechin to be used as a potent natural inhibitor that can be used to block or at least weaken the SARS-CoV-2 entry and its subsequent invasion. In vitro experiments are required to validate epicatechin effectiveness against the activity of the human ACE2 receptor.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Antivirais/farmacologia , Catequina , SARS-CoV-2 , Internalização do Vírus/efeitos dos fármacos , COVID-19 , Catequina/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA