Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 38(18)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691317

RESUMO

An intrinsically microporous polyimide is synthesized in m-cresol by a one-pot high-temperature condensation reaction of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and newly designed 2,6 (7)-dihydroxy-3,7(6)-diaminotriptycene (DAT1-OH). The 6FDA-DAT1-OH polyimide is thermally stable up to 440 °C, shows excellent solubility in polar solvents, and has moderately high Brunauer-Teller-Emmett (BET) surface area of 160 m2 g-1 , as determined by nitrogen adsorption at -196 °C. Hydroxyl functionalization applied to the rigid 3D triptycene-based diamine building block results in a polyimide that exhibits moderate pure-gas CO2 permeability of 70 Barrer combined with high CO2 /CH4 selectivity of 50. Mixed-gas permeation studies demonstrate excellent plasticization resistance of 6FDA-DAT1-OH with impressive performance as potential membrane material for natural gas sweetening with a CO2 permeability of 50 Barrer and CO2 /CH4 selectivity of 40 at a typical natural gas well partial pressure of 10 atm.


Assuntos
Técnicas de Química Analítica/instrumentação , Gás Natural , Resinas Sintéticas/síntese química , Antracenos/química , Polímeros/química
2.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566954

RESUMO

The treatment of produced water, associated with oil & gas production, is envisioned to gain more significant attention in the coming years due to increasing energy demand and growing interests to promote sustainable developments. This review presents innovative practical solutions for oil/water separation, desalination, and purification of polluted water sources using a combination of porous membranes and plasma treatment technologies. Both these technologies can be used to treat produced water separately, but their combination results in a significant synergistic impact. The membranes functionalized by plasma show a remarkable increase in their efficiency characterized by enhanced oil rejection capability and reusability, while plasma treatment of water combined with membranes and/or adsorbents could be used to soften water and achieve high purity.

3.
RSC Adv ; 10(9): 5088-5097, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498331

RESUMO

The development of stable 3D surfaces for oil/water separation has been of great interest to researchers. Inspired by the lotus leaf, in this study, a superhydrophobic stable and robust surface was generated by the combination of n-octadecyltrichlorosilane, silica, polypyrrole and polyurethane (ODTCS-SiO2-PP-PU). The constructed 3D network displayed superhydrophobic and superoleophilic behavior with a high water contact angle of 154.7° ± 0.8°. The superhydrophobic behavior of the porous material was found to be stable for months. Apart from the hydrophobicity analysis of the material, the various forms of the materials were investigated via scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDX). Under the force of gravity, hexane displayed an exceptionally high flux of 102 068 Lm-2 h-1 through ODTCS-SiO2-PP-PU. The macroporous network of ODTCS-SiO2-PP-PU displayed fewer chances of fouling, which is a common issue with membranes. Moreover, its porous network displayed good absorption capacity for various non-polar organic solvents. The maximum absorption capacity observed for toluene was 34 times its own weight. The separation efficiency of various non-polar organic solvents from water was observed in the range of 99.5 to 99.8%. ODTCS-SiO2-PP-PU, due to its superhydrophobicity, 3D porous network, extraordinarily high flux, good absorption capacity, and excellent separation capability, has been established as a good candidate for the separation of organic and oil contaminants from water.

4.
ACS Omega ; 3(9): 11874-11882, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459273

RESUMO

A simple synthetic route to a novel sterically hindered triptycene-based diamine, 1,3,6,8-tetramethyl-2,7-diaminotriptycene (TMDAT), and its use in the preparation of high molecular weight polyimides of intrinsic microporosity (PIM-PIs) are reported. The organosoluble TMDAT-derived polyimides displayed high Brunauer-Emmett-Teller surface areas ranging between 610 and 850 m2 g-1 and demonstrated excellent thermal stability of up to 510 °C. Introduction of the rigid three-dimensional paddlewheel triptycene framework and the tetramethyl-induced restriction of the imide bond rotation resulted in highly permeable polyimides with moderate gas-pair selectivity. The best performing polyimide made from TMDAT and a triptycene-based dianhydride showed gas transport properties located between the 2008 and 2015 polymer permeability/selectivity trade-off curves with H2 and O2 permeabilities of 2858 and 575 barrer combined with H2/N2 and O2/N2 selectivities of 24 and 4.8, respectively, after 200 days of physical aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA