Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(45): e2310057120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37906643

RESUMO

During aging, the cellular response to unfolded proteins is believed to decline, resulting in diminished proteostasis. In model organisms, such as Caenorhabditis elegans, proteostatic decline with age has been linked to proteome solubility shifts and the onset of protein aggregation. However, this correlation has not been extensively characterized in aging mammals. To uncover age-dependent changes in the insoluble portion of a mammalian proteome, we analyzed the detergent-insoluble fraction of mouse brain tissue by mass spectrometry. We identified a group of 171 proteins, including the small heat shock protein α-crystallin, that become enriched in the detergent-insoluble fraction obtained from old mice. To enhance our ability to detect features associated with proteins in that fraction, we complemented our data with a meta-analysis of studies reporting the detergent-insoluble proteins in various mouse models of aging and neurodegeneration. Strikingly, insoluble proteins from young and old mice are distinct in several features in our study and across the collected literature data. In younger mice, proteins are more likely to be disordered, part of membraneless organelles, and involved in RNA binding. These traits become less prominent with age, as an increased number of structured proteins enter the pellet fraction. This analysis suggests that age-related changes to proteome organization lead a group of proteins with specific features to become detergent-insoluble. Importantly, these features are not consistent with those associated with proteins driving membraneless organelle formation. We see no evidence in our system of a general increase of condensate proteins in the detergent-insoluble fraction with age.


Assuntos
Detergentes , Proteoma , Camundongos , Animais , Proteoma/metabolismo , Detergentes/metabolismo , Envelhecimento , Caenorhabditis elegans/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
2.
J Cell Mol Med ; 28(7): e18160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506067

RESUMO

Apolipoprotein E4 (ApoE4) is involved in the stress-response processes and is hypothesized to be a risk factor for depression by means of mitochondrial dysfunction. However, their exact roles and underlying mechanisms are largely unknown. ApoE4 transgenic mice (B6. Cg-ApoEtm1Unc Cdh18Tg( GFAP-APOE i4)1Hol /J) were subjected to stress (lipopolysaccharides, LPS) to elucidate the aetiology of ApoE4-induced depression. LPS treatment significantly aggravated depression-like behaviours, concurrent with neuroinflammation and impaired mitochondrial changes, and melatonin/Urolithin A (UA) + 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR) reversed these effects in ApoE4 mice. Concurrently, ApoE4 mice exhibited mitophagy deficits, which could be further exacerbated by LPS stimulation, as demonstrated by reduced Atg5, Beclin-1 and Parkin levels, while PINK1 levels were increased. However, these changes were reversed by melatonin treatment. Additionally, proteomic profiling suggested mitochondria-related signalling and network changes in ApoE4 mice, which may underlie the exaggerated response to LPS. Furthermore, HEK 293T cells transfected with ApoE4 showed mitochondria-associated protein and mitophagy defects, including PGC-1α, TFAM, p-AMPKα, PINK1 and LC3B impairments. Additionally, it aggravates mitochondrial impairment (particularly mitophagy), which can be attenuated by triggering autophagy. Collectively, ApoE4 dysregulation enhanced depressive behaviour upon LPS stimulation.


Assuntos
Apolipoproteína E4 , Melatonina , Camundongos , Animais , Apolipoproteína E4/metabolismo , Apolipoproteína E4/farmacologia , Depressão , Melatonina/farmacologia , Melatonina/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Proteômica , Mitocôndrias/metabolismo , Apolipoproteínas E/metabolismo , Camundongos Transgênicos , Proteínas Quinases Ativadas por AMP/metabolismo
3.
Biochem Biophys Res Commun ; 701: 149550, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310688

RESUMO

The beneficial effect of a beta-lactam antibiotic, Ceftriaxone (CEF), to improve depressive-like symptoms has been documented previously, attributed to its modulation of glutamate neurotransmission. Here, we aimed to determine whether CEF could improve LPS-altered glutamatergic signaling associated with neuroinflammation-allied depression. To assess our goals, we established a neuroinflammation-allied depression mice model by injecting lipopolysaccharides (LPS), followed by behavioral and biochemical analysis. LPS-treated mice displayed depressive symptoms, neuroinflammation, dysregulated glutamate and its transporter (GLT-1) expression, altered expression of astrocyte reactive markers (GFAP, cxcl10, steap4, GBP2, and SRGN), and dysregulated BDNF/TrkB signaling. However, these changes were rescued by CEF treatment, as we found decreased neuroinflammation, relief of depression symptoms, and improved GLT-1 and BDNF/TrkB signaling upon CEF treatment. Moreover, GLT-1 and BDNF/TrkB regulation role of CEF was validated by K252a and DHK treatment. In summary, the anti-depressive effects of glutamate modulators, like CEF, are closely related to their anti-inflammatory role.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ceftriaxona , Camundongos , Animais , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Ácido Glutâmico/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo
4.
Biochem Biophys Res Commun ; 722: 150074, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38805785

RESUMO

Genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome enhances the extinction of contextual fear memory, which is attributed to its role in neuronal and synaptic dysregulation, concurrent with neurotransmitter function disturbances. This study aimed to determine whether NLRP3 plays a role in generalizing fear via the inflammatory axis. We established the NLRP3 KO mice model, followed by behavioral and biochemical analyses. The NLRP3 KO mice displayed impaired fear generalization, lower neuroinflammation levels, and dysregulated neurotransmitter function. Additionally, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not the inhibition of NMDA or 5-HT2C receptors, resulted in fear generalization in NLRP3 KO mice because TAT-GluA2 3Y, but not SB242084 and D-cycloserine, treated blocked NLRP3 deprivation effects on fear generalization. Thus, global knockout of NLRP3 is associated with aberrant fear generalization, possibly through AMPA receptor signaling.


Assuntos
Medo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de AMPA , Animais , Masculino , Camundongos , Medo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Receptores de AMPA/metabolismo , Receptores de AMPA/genética
5.
FASEB J ; 37(5): e22896, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37000506

RESUMO

Associative learning and memory are fundamental behavioral processes through which organisms adapt to complex environments. Associative memory involves long-lasting changes in synaptic plasticity. Dendritic spines are tiny protrusions from the dendritic shaft of principal neurons, providing the structural basis for synaptic plasticity and brain networks in response to external stimuli. Mounting evidence indicates that dendritic spine dynamics are crucial in different associative memory phases, including acquisition, consolidation, and reconsolidation. Causally bridging dendritic spine dynamics and associative memory is still limited by the suitable tools to measure and control spine dynamics in vivo under behaviorally relevant conditions. Here, we review data providing evidence for the remodeling of dendritic spines during associative memory processing and outline open questions.


Assuntos
Espinhas Dendríticas , Plasticidade Neuronal , Plasticidade Neuronal/fisiologia , Encéfalo/fisiologia , Memória/fisiologia , Neurônios , Sinapses
6.
Mol Cell Biochem ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970706

RESUMO

Alzheimer's disease (AD) progression is closely linked to the propagation of pathological Amyloid ß (Aß), a process increasingly understood to involve extracellular vesicles (EVs), namely exosomes. The specifics of Aß packaging into exosomes remain elusive, although evidence suggests an ESCRT (Endosomal Sorting Complex Required for Transport)-independent origin to be responsible in spreading of AD pathogenesis. Intriguingly, PrPC, known to influence exosome abundance and bind oligomeric Aß (oAß), can be released in exosomes via both ESCRT-dependent and ESCRT-independent pathways, raising questions about its role in oAß trafficking. Thus, we quantified Aß levels within EVs, cell medium, and intracellularly, alongside exosome biogenesis-related proteins, following deletion or overexpression of PrPC. The same parameters were also evaluated in the presence of specific exosome inhibitors, namely Manumycin A and GW4869. Our results revealed that deletion of PrPC increases intracellular Aß accumulation and amplifies EV abundance, alongside significant changes in cellular levels of exosome biogenesis-related proteins Vps25, Chmp2a, and Rab31. In contrast, cellular expression of PrPC did not alter exosomal Aß levels. This highlights PrPC's influence on exosome biogenesis, albeit not in direct Aß packaging. Additionally, our data confirm the ESCRT-independent exosome release of Aß and we show a direct reduction in Chmp2a levels upon oAß challenge. Furthermore, inhibition of opposite exosome biogenesis pathway resulted in opposite cellular PrPC levels. In conclusion, our findings highlight the intricate relationship between PrPC, exosome biogenesis, and Aß release. Specifically, they underscore PrPC's critical role in modulating exosome-associated proteins, EV abundance, and cellular Aß levels, thereby reinforcing its involvement in AD pathogenesis.

7.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38461552

RESUMO

Bi-functional materials provide an opportunity for the development of high-performance devices. Up till now, bi-functional performance of NiCo2O4@SnS2nanosheets is rarely investigated. In this work, NiCo2O4@SnS2nanosheets were synthesized on carbon cloth by utilizing a simple hydrothermal technique. The developed electrode (NiCo2O4@SnS2/CC) was investigated for the detection of L-Cysteine and supercapacitors applications. As a non-enzymatic sensor, the electrode proved to be highly sensitive for the detection of L-cysteine. The electrode exhibits a reproducible sensitivity of 4645.82µA mM-1cm-2in a wide linear range from 0.5 to 5 mM with a low limit of detection (0.005µM). Moreover, the electrode shows an excellent selectivity and long-time stability. The high specific surface area, enhanced kinetics, good synergy and distinct architecture of NiCo2O4@SnS2nanosheets produce a large number of active sites with substantial energy storage potential. As a supercapacitor, the electrode exhibits improve capacitance of 655.7 F g-1at a current density of 2 A g-1as compare to NiCo2O4/CC (560 F g-1). Moreover, the electrode achieves 95.3% of its preliminary capacitance after 10 000 cycles at 2 A g-1. Our results show that NiCo2O4@SnS2/CC nanosheets possess binary features could be attractive electrode material for the development of non-enzymatic biosensors as well as supercapacitors.

8.
Cell Mol Life Sci ; 80(6): 139, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149826

RESUMO

Currently, no effective therapeutics exist for the treatment of incurable neurodegenerative diseases such as Alzheimer's disease (AD). The cellular prion protein (PrPC) acts as a high-affinity receptor for amyloid beta oligomers (AßO), a main neurotoxic species mediating AD pathology. The interaction of AßO with PrPC subsequently activates Fyn tyrosine kinase and neuroinflammation. Herein, we used our previously developed peptide aptamer 8 (PA8) binding to PrPC as a therapeutic to target the AßO-PrP-Fyn axis and prevent its associated pathologies. Our in vitro results indicated that PA8 prevents the binding of AßO with PrPC and reduces AßO-induced neurotoxicity in mouse neuroblastoma N2a cells and primary hippocampal neurons. Next, we performed in vivo experiments using the transgenic 5XFAD mouse model of AD. The 5XFAD mice were treated with PA8 and its scaffold protein thioredoxin A (Trx) at a 14.4 µg/day dosage for 12 weeks by intraventricular infusion through Alzet® osmotic pumps. We observed that treatment with PA8 improves learning and memory functions of 5XFAD mice as compared to Trx-treated 5XFAD mice. We found that PA8 treatment significantly reduces AßO levels and Aß plaques in the brain tissue of 5XFAD mice. Interestingly, PA8 significantly reduces AßO-PrP interaction and its downstream signaling such as phosphorylation of Fyn kinase, reactive gliosis as well as apoptotic neurodegeneration in the 5XFAD mice compared to Trx-treated 5XFAD mice. Collectively, our results demonstrate that treatment with PA8 targeting the AßO-PrP-Fyn axis is a promising and novel approach to prevent and treat AD.


Assuntos
Doença de Alzheimer , Aptâmeros de Peptídeos , Proteínas PrPC , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Modelos Animais de Doenças
9.
Environ Microbiol ; 25(10): 1830-1846, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37171093

RESUMO

The wild relatives of modern tomato crops are native to South America. These plants occur in habitats as different as the Andes and the Atacama Desert and are, to some degree, all susceptible to fungal pathogens of the genus Alternaria. Alternaria is a large genus. On tomatoes, several species cause early blight, leaf spots and other diseases. We collected Alternaria-like infection lesions from the leaves of eight wild tomato species from Chile and Peru. Using molecular barcoding markers, we characterized the pathogens. The infection lesions were caused predominantly by small-spored species of Alternaria of the section Alternaria, like A. alternata, but also by Stemphylium spp., Alternaria spp. from the section Ulocladioides and other related species. Morphological observations and an infection assay confirmed this. Comparative genetic diversity analyses show a larger diversity in this wild system than in studies of cultivated Solanum species. As A. alternata has been reported to be an increasing problem in cultivated tomatoes, investigating the evolutionary potential of this pathogen is not only interesting to scientists studying wild plant pathosystems. It could also inform crop protection and breeding programs to be aware of potential epidemics caused by species still confined to South America.


Assuntos
Solanum lycopersicum , Solanum , Alternaria/genética , Produtos Agrícolas , Chile
10.
J Neuroinflammation ; 20(1): 177, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507761

RESUMO

Alzheimer's disease (AD) is an incurable, progressive and devastating neurodegenerative disease. Pathogenesis of AD is associated with the aggregation and accumulation of amyloid beta (Aß), a major neurotoxic mediator that triggers neuroinflammation and memory impairment. Recently, we found that cellulose ether compounds (CEs) have beneficial effects against prion diseases by inhibiting protein misfolding and replication of prions, which share their replication mechanism with Aß. CEs are FDA-approved safe additives in foods and pharmaceuticals. Herein, for the first time we determined the therapeutic effects of the representative CE (TC-5RW) in AD using in vitro and in vivo models. Our in vitro studies showed that TC-5RW inhibits Aß aggregation, as well as neurotoxicity and immunoreactivity in Aß-exposed human and murine neuroblastoma cells. In in vivo studies, for the first time we observed that single and weekly TC-5RW administration, respectively, improved memory functions of transgenic 5XFAD mouse model of AD. We further demonstrate that TC-5RW treatment of 5XFAD mice significantly inhibited Aß oligomer and plaque burden and its associated neuroinflammation via regulating astrogliosis, microgliosis and proinflammatory mediator glial maturation factor beta (GMFß). Additionally, we determined that TC-5RW reduced lipopolysaccharide-induced activated gliosis and GMFß in vitro. In conclusion, our results demonstrate that CEs have therapeutic effects against Aß pathologies and cognitive impairments, and direct, potent anti-inflammatory activity to rescue neuroinflammation. Therefore, these FDA-approved compounds are effective candidates for developing therapeutics for AD and related neurodegenerative diseases associated with protein misfolding.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Doenças Neuroinflamatórias , Éter , Fator de Maturação da Glia , Disfunção Cognitiva/tratamento farmacológico , Etil-Éteres/uso terapêutico , Éteres/uso terapêutico , Gliose/complicações , Cognição , Modelos Animais de Doenças
11.
Cell Tissue Res ; 392(1): 235-246, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35821439

RESUMO

Prion diseases are incurable, infectious and fatal neurodegenerative diseases that affect both humans and animals. The pathogenesis of prion disease involves the misfolding of the cellular prion protein, PrPC, to a disease-causing conformation, PrPSc, in the brain. The exact mechanism of conversion of PrPC to PrPSc is not clear; however, there are numerous studies supporting that this process of misfolding requires the association of PrPC with lipid raft domains of the plasma membrane. An increase in the cellular cholesterol content with prion infection has been observed in both in vivo and in vitro studies. As cholesterol is critical for the formation of lipid rafts, on the one hand, this increase may be related to, or aiding in, the process of prion conversion. On the other hand, increased cholesterol levels may affect neuronal viability. Here, we discuss current literature on the underlying mechanisms and potential consequences of elevated neuronal cholesterol in prion infection and advancements in prion disease therapeutics targeting brain cholesterol homeostasis.


Assuntos
Doenças Priônicas , Príons , Animais , Humanos , Príons/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas , Colesterol/metabolismo
12.
Mol Psychiatry ; 27(2): 1047-1058, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34642455

RESUMO

Major depression disorder is a severe mental illness often linked with metabolic disorders. Adiponectin is an adipocyte-secreted circulatory hormone with antidiabetic and glucose/lipid modulation capacities. Studies have demonstrated the pathophysiological roles of adiponectin involved in various neurological disorders, including depression. However, the underlying mechanisms are poorly understood. Here we showed that adiponectin deprivation enhanced antidepressive-like behaviors in the LPS-induced model of depression. APN KO mice displayed increased cytokines (both pro and anti-inflammatory), accompanied by an impaired expression of adiponectin receptors (mRNA/protein level) and decreasing IBA-1 level in the cortex and primary microglia of LPS treated APN KO mice. Further, LPS-treatment significantly reduced p-NFκB expression in the microglia of APN KO mice. However, the Bay11-7082 treatment recovered p-NFκB expression in the cortex of APN KO mice in the presence of LPS. Interestingly, the antidepressant potentials of APN KO mice were abolished by TrkB antagonist K252a, IKK inhibitor Bay11-7082, and AdipoRon suggesting crosstalk between TrkB/BDNF signaling and NFκB in depression. Furthermore, the effects of Bay11-7082 were abolished by a TrkB/BDNF activator (7,8-DHF), indicating a critical role of TrkB/BDNF signaling. Taken together, these findings showed that dysregulated neuroinflammatory status and BDNF signaling might underlie the antidepressive-like behaviors of APN KO mice. NFκB elicited BDNF changes may be accountable for the pathogenesis of LPS induced depression, where APN might present an alternative therapeutic target for depressive disorders.


Assuntos
Adiponectina , Fator Neurotrófico Derivado do Encéfalo , Adiponectina/farmacologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
13.
Biotechnol Appl Biochem ; 70(1): 83-96, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35244949

RESUMO

Asarum sieboldii Miq., a perennial herb of the family Aristolochiaceae, is widely used in China to treat cold, fever, aphthous stomatitis, toothache, gingivitis, and rheumatoid arthritis. Methyleugenol is the most representative pharmacological constituent of this medicinal herb. Cinnamoyl-CoA reductase (CCR), which has been well known for occupying a critical position in the lignin biosynthesis pathway, is also shared with the biosynthesis of methyleugenol. To better understand the regulatory mechanisms of methyleugenol biosynthesis, a 1530-bp long promoter region of the AsCCR1 gene was isolated. PLACE and PlantCARE analysis affirmed the existence of the core promoter elements such as TATA and CAAT boxes, abiotic stress-responsive cis-regulation elements like abscisic acid-responsive element, G-box, and MBS in the isolated sequence. The histochemical assay suggested that it was a constitutive promoter, highly expressed in the root tissue. Moreover, the region of -200 bp to ATG (start codon) was enough to drive the expression of It GUS gene. Treatments with low temperature and high concentration of gibberellin or abscisic acid demonstrated the abiotic stress-induced expression of the AsCCR1 promoter. Overall, this study revealed the isolation and characterization of the AsCCR1 promoter. Moreover, it also provided a candidate gene for molecular breeding in A. sieboldii to enhance its pharmacological potential.


Assuntos
Asarum , Ácido Abscísico/farmacologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas
14.
Immun Ageing ; 20(1): 15, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005686

RESUMO

BACKGROUND: A wide spectrum of changes occurs in the brain with age, from molecular to morphological aspects, and inflammation accompanied by mitochondria dysfunction is one of the significant factors associated with age. Adiponectin (APN), an essential adipokine in glucose and lipid metabolism, is involved in the aging; however, its role in brain aging has not been adequately explored. Here, we aimed to explore the relationship between APN deficiency and brain aging using multiple biochemical and pharmacological methods to probe APN in humans, KO mice, primary microglia, and BV2 cells. RESULTS: We found that declining APN levels in aged human subjects correlated with dysregulated cytokine levels, while APN KO mice exhibited accelerated aging accompanied by learning and memory deficits, anxiety-like behaviors, neuroinflammation, and immunosenescence. APN-deficient mice displayed aggravated mitochondrial dysfunction and HDAC1 upregulation. In BV2 cells, the APN receptor agonist AdipoRon alleviated the mitochondrial deficits and aging markers induced by rotenone or antimycin A. HDAC1 antagonism by Compound 60 (Cpd 60) improved mitochondrial dysfunction and age-related inflammation, as validated in D-galactose-treated APN KO mice. CONCLUSION: These findings indicate that APN is a critical regulator of brain aging by preventing neuroinflammation associated with mitochondrial impairment via HDAC1 signaling.

15.
Environ Monit Assess ; 195(6): 689, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198342

RESUMO

Landfills are commonly seen as the most cost-efficient and practical approach to waste management in various regions around the world. Nonetheless, the infiltration of hazardous materials from poorly managed dumping sites remains a significant environmental issue in most developing countries such as India. Leachate serves as a prominent point source of contamination in many environmental media like soil, groundwater, and surface water around the world. So the prime issues humans are experiencing are associated with water quality. Thus, the investigation was undertaken to assess the impact of leachate from the Achan landfill on surface water quality in the Temperate Himalayas. Monitoring was done during in all four seasons, viz., spring, summer, autumn, and winter. Among the sites, the leachate outflow site was found to have the highest mean value of pH (7.95), EC (2.16 dS/m), total nitrogen (2.64 mg/l), P (4.75 mg/l), K (1.41 mg/l), Ca (107.45 mg/l), Mg (54.93 mg/l), Zn (0.8 mg/l), Fe (1.78 mg/l), Cu (0.66 mg/l), Mn (0.81 mg/l), BOD (21.47 mg/l), COD (66.24 mg/l), temperature (14.22 °C), turbidity (14.29 NTU), while lowest mean values of all parameters were recorded at control site. Among the seasons, summer season was found to have maximum value of pH (7.9), EC (2.36 dS/m), total nitrogen (2.54 mg/l), P (4.0 mg/l), K (0.89 mg/l), Ca (85.94 mg/l), Mg (43.91 mg/l), Fe (1.4 mg/l), Cu (0.52 mg/l), Mn (0.64 mg/l), BOD (22.82 mg/l), COD (65.87 mg/l), temperature (18.99 °C), and turbidity (8.49 NTU). The maximum mean value of Zn (0.66 mg/l) was recorded during winter season, while other parameters were found to be minimum during winter season. From this study, we concluded that a decreasing trend was observed during all the seasons in the concentration of all physico-chemical parameters with an increase in distance from the landfill. So it is recommended that the leachate should be treated at the source before disposing into the water body and the landfill should be lined properly to prevent the entry of leachate into water sources.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Humanos , Qualidade da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Instalações de Eliminação de Resíduos , Nitrogênio
16.
Toxicol Appl Pharmacol ; 446: 116055, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550883

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPARγ) has been shown to have therapeutic promise in the treatment of ischemic stroke and is supported by several studies. To identify possible PPARγ activators, the current study used an in silico technique in conjunction with molecular simulations and in vivo validation. FDA-approved drugs were evaluated using molecular docking to determine their affinity for PPARγ. The findings of molecular simulations support the repurposing of rabeprazole and ethambutol for the treatment of ischemic stroke. Adult Sprague Dawley rats were subjected to transient middle cerebral artery occlusion (t-MCAO). Five groups were made as a sham-operated, t-MCAO group, rabeprazole +t-MCAO, ethambutol +t-MCAO, and pioglitazone +t-MCAO. The neuroprotective effects of these drugs were evaluated using the neurological deficit score and the infarct area. The inflammatory mediators and signaling transduction proteins were quantified using Western blotting, ELISA, and immunohistochemistry. The repurposed drugs mitigated cerebral ischemic injury by PPARγ mediated downregulation of nods like receptor protein 3 inflammasomes (NLRP3), tumor necrosis factor-alpha (TNF-α), cyclooxygenase 2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-kB), and c-Jun N-terminal kinase (p-JNK). Our data demonstrated that rabeprazole and ethambutol have neuroprotective potential via modulating the cytoprotective stress response, increasing cellular survival, and balancing homeostatic processes, and so may be suitable for future research in stroke therapy.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Encéfalo , Isquemia Encefálica/metabolismo , Etambutol/farmacologia , Etambutol/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Simulação de Acoplamento Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , PPAR gama/metabolismo , Rabeprazol/farmacologia , Rabeprazol/uso terapêutico , Ratos , Ratos Sprague-Dawley
17.
J Neuroinflammation ; 18(1): 38, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526073

RESUMO

BACKGROUND: Selective serotonin reuptaker inhibitors, including fluoxetine, are widely studied and prescribed antidepressants, while their exact molecular and cellular mechanism are yet to be defined. We investigated the involvement of HDAC1 and eEF2 in the antidepressant mechanisms of fluoxetine using a lipopolysaccharide (LPS)-induced depression-like behavior model. METHODS: For in vivo analysis, mice were treated with LPS (2 mg/kg BW), fluoxetine (20 mg/kg BW), HDAC1 activator (Exifone: 54 mg/kg BW) and NH125 (1 mg/kg BW). Depressive-like behaviors were confirmed via behavior tests including OFT, FST, SPT, and TST. Cytokines were measured by ELISA while Iba-1 and GFAP expression were determined by immunofluorescence. Further, the desired gene expression was measured by immunoblotting. For in vitro analysis, BV2 cell lines were cultured; treated with LPS, exifone, and fluoxetine; collected; and analyzed. RESULTS: Mice treated with LPS displayed depression-like behaviors, pronounced neuroinflammation, increased HDAC1 expression, and reduced eEF2 activity, as accompanied by altered synaptogenic factors including BDNF, SNAP25, and PSD95. Fluoxetine treatment exhibited antidepressant effects and ameliorated the molecular changes induced by LPS. Exifone, a selective HDAC1 activator, reversed the antidepressant and anti-inflammatory effects of fluoxetine both in vivo and in vitro, supporting a causing role of HDAC1 in neuroinflammation allied depression. Further molecular mechanisms underlying HDAC1 were explored with NH125, an eEF2K inhibitor, whose treatment reduced immobility time, altered pro-inflammatory cytokines, and NLRP3 expression. Moreover, NH125 treatment enhanced eEF2 and GSK3ß activities, BDNF, SNAP25, and PSD95 expression, but had no effects on HDAC1. CONCLUSIONS: Our results showed that the antidepressant effects of fluoxetine may involve HDAC1-eEF2 related neuroinflammation and synaptogenesis.


Assuntos
Antidepressivos de Segunda Geração/uso terapêutico , Depressão/metabolismo , Quinase do Fator 2 de Elongação/biossíntese , Fluoxetina/uso terapêutico , Histona Desacetilase 1/biossíntese , Lipopolissacarídeos/toxicidade , Animais , Antidepressivos de Segunda Geração/farmacologia , Linhagem Celular , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Fluoxetina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia
18.
Brain Behav Immun ; 92: 10-24, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181270

RESUMO

Previous studies have demonstrated a close association between an altered immune system and major depressive disorders, and inhibition of neuroinflammation may represent an alternative mechanism to treat depression. Recently, the anti-inflammatory activity of ibrutinib has been reported. However, the effect of ibrutinib on neuroinflammation-induced depression and its underlying mechanism has not been comprehensively studied. Therefore, we aimed to elucidate the potential anti-depressive role and mechanism of ibrutinib against neuroinflammation-induced depression and synaptic defects. Our results showed that ibrutinib treatment significantly reduced lipopolysaccharide (LPS)-induced depressive-like behaviors and neuroinflammation via inhibiting NF-kB activation, decreasing proinflammatory cytokine levels, and normalizing redox signaling and its downstream components, including Nrf2, HO-1, and SOD2, as well as glial cell activation markers, such as Iba-1 and GFAP. Further, ibrutinib treatment inhibited LPS-activated inflammasome activation by targeting NLRP3/P38/Caspase-1 signaling. Interestingly, LPS reduced the number of dendritic spines and expression of BDNF, and synaptic-related markers, including PSD95, snap25, and synaptophysin, were improved by ibrutinib treatment in the hippocampal area of the mouse brain. In conclusion, our findings suggest that ibrutinib can alleviate neuroinflammation and synaptic defects, suggesting it has antidepressant potential against LPS-induced neuroinflammation and depression.


Assuntos
Transtorno Depressivo Maior , Lipopolissacarídeos , Adenina/análogos & derivados , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Inflamassomos , Camundongos , Piperidinas
19.
Neurochem Res ; 46(4): 905-920, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33486698

RESUMO

Alzheimer's disease (AD) is age-dependent neurological disorder with progressive loss of cognition and memory. This multifactorial disease is characterized by intracellular neurofibrillary tangles, beta amyloid plaques, neuroinflammation, and increased oxidative stress. The increased cellular manifestations of these markers play a critical role in neurodegeneration and pathogenesis of AD. Therefore, reducing neurodegeneration by decreasing one or more of these markers may provide a potential therapeutic roadmap for the treatment of AD. AD causes a devastating loss of cognition with no conclusive and effective treatment. Many synthetic compound containing isoxazolone nucleus have been reported as neuroprotective agents. The aim of this study was to explore the anti-Alzheimer's potential of a newly synthesized 3,4,5-trimethoxy isoxazolone derivative (TMI) that attenuated the beta amyloid (Aß1-42) and tau protein levels in streptozotocin (STZ) induced Alzheimer's disease mouse model. Molecular analysis revealed increased beta amyloid (Aß1-42) protein levels, increased tau protein levels, increased cellular oxidative stress and reduced antioxidant enzymes in STZ exposed mice brains. Furthermore, ELISA and PCR were used to validate the expression of Aß1-42. Pre-treatment with TMI significantly improved the memory and cognitive behavior along with ameliorated levels of Aß1-42 proteins. TMI treated mice further showed marked increase in GSH, CAT, SOD levels while decreased levels of acetylcholinesterase inhibitors (AChEI's) and MDA intermediate. The multidimensional nature of isoxazolone derivatives and its versatile affinity towards various targets highpoint its multistep targeting nature. These results indicated the neuroprotective potential of TMI which may be considered for the treatment of neurodegenerative disease specifically in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Isoxazóis/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Avaliação Pré-Clínica de Medicamentos , Teste de Labirinto em Cruz Elevado , Feminino , Isoxazóis/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/metabolismo , Teste de Campo Aberto/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estreptozocina , Proteínas tau/metabolismo
20.
Neurochem Res ; 46(12): 3135-3148, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34398408

RESUMO

Depression is the most common psychiatric disorder associated with brain and immune system abnormalities. In recent years, xanthohumol (Xn) a bioactive prenylated flavonoid has received ample attention for its polypharmacological effects, therefore, here we aimed to explore the protective effects of Xn against the LPS-induced depressive-like symptoms mediated by inflammation and oxidative stress. We tested the effect of Xn against LPS-induced behavioural changes in mice by means of forced swimming test (FST), tail suspention test (TST), sucrose preference test (SPT) and open field test (OPT). Examined the neuroinflammation and oxido-nitrosative stress (O&NS) markers and analyze Nrf2 and NF-κB signalling pathways in the hippocampus. Our results indicated that peripheral repeated administration of lipopolysaccharides (LPS) (1 mg/kg, intra peritoneally) induced depressive-like behavior, neuroinflammation and O&NS in mice. Pretreatment with Xn (10 and 20 mg/kg, intra gastrically) reverse the behavioural impairments prophylactically as obvious in the FST and TST without effecting locomotion, however only 20 mg dose improve anhedonic behavior as observed in SPT. Similarly, Xn pretreatment in dose-dependent manner prevented the LPS induced neuro-inflammation and O&NS. Immunofluorescence analysis showed that Xn reduced activated gliosis via attenuation of Iba-1 and GFAP in hippocampus. In addition, Xn considerably reduced the expression of phospho-NF-κB and cleaved caspase-3 while enhanced Nrf2 and HO-1 expression in the hippocampus. To the best of our knowledge, this is the first study to examine the underlying beneficial prophylactic effects of the Xn in neuroinflammation and O&NS mediating depressive-like behaviors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Propiofenonas/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Citocinas , Transtorno Depressivo/induzido quimicamente , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Estresse Oxidativo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA