Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chemistry ; 26(31): 7109-7117, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32129516

RESUMO

A comprehensive model to describe the water stability of prototypical metal-organic frameworks (MOFs) is derived by combining different types of theoretical and experimental approaches. The results provide an insight into the early stages of water-triggered destabilization of MOFs and allow detailed pathways to be proposed for the degradation of different MOFs under aqueous conditions. The essential elements of the approach are computing the pKa values of coordinated water molecules and geometry relaxations. Variable-temperature and pH infrared spectroscopy techniques are used to corroborate the main findings. The model developed herein helps to explain stability limits observed for several prototypical MOFs, including MOF-5, HKUST-1, UiO-66, and MIL-101-Cr, in aqueous solutions, and thus, provides an insight into the possible degradation pathways in acidic and basic environments. The formation of a metal hydroxide through the autoprotolysis of metal-coordinated water molecules and the strength of carboxylate-metal interactions are suggested to be two key players that govern stability in basic and acidic media, respectively. The methodology presented herein can effectively guide future efforts, which are especially significant for in silico screening, for developing novel MOFs with enhanced aqueous stability.

2.
Inorg Chem ; 58(22): 15078-15087, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31661254

RESUMO

The remarkable water stability of Zr-carboxylate-based metal-organic frameworks (MOFs) stimulated considerable interest toward their utilization in aqueous phase applications. The origin of such stability is probed here through pH titration and pKa modeling. A unique feature of the Zr6(µ3-OH)4(µ3-O)4(RCO2)12 cluster is the Zr-bridging oxo/hydroxyl groups, demonstrating several pKa values that appear to provide for the water stability at a wide range of pH. Accordingly, the tunability of the cage/surface charge of the MOF can feasibly be controlled through careful adjustment of solution pH. Such high stability, and facile control over cage/surface charge, can additionally be augmented through introducing chemical functionalities lining the cages of the MOF, specifically amine groups in the UiO-66-NH2 presented herein. The variable protonation states of the Zr cluster and the pendant amino groups, their H-bond donor/acceptor characteristics, and their electrostatic interactions with guest molecules were effectively utilized in controlled experiments to demonstrate high uptake of model guest molecules (137 mg/g for Cr(VI), 1275 mg/g for methylene blue, and 909 mg/g for methyl orange). Additionally, a practical form of the silica-supported MOF, UiO-66-NH2@SiO2, constructed in under 2 h reaction time, is described, generating a true platform microporous sorbent for practical use in demanding applications.

3.
J Biol Inorg Chem ; 23(2): 285-293, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282552

RESUMO

Superoxide dismutases (SOD) are vital enzymes for disproportionation of superoxide molecules in mammals. Despite the high similarity between the Mn-SOD and Fe-SOD, they are inactive if the metals in the active sites are exchanged. Here, we use DFT, QM/MM and Monte Carlo sampling to optimize the crystal structure and to calculate the mid-point potential for the native and substituted Mn/Fe-SOD. The optimized DFT and QM/MM structures of the Mn-SOD show a major conformational change for the conserved TYR34 compared to the X-ray structure. These changes reduce the distance between TYR34 and Mn ion to 2.59 Å, which yields a lower reduction potential for the Mn. On contrary, there is no significant difference between optimized and crystal structures in the Fe-SOD. The calculated E m values starting from the DFT structures of the active sites show similar pattern, in good agreement with those observed experimentally. However, the calculated E m values starting with the QM/MM structures that include the whole protein are significantly higher due to the desolvation penalty. In addition, the pK a values for the water ligand in the reduced state Mn(II) and Fe(II) were calculated. The water pK a in Mn-SOD is higher than that in Fe-SOD by 3.5 pH units, which is similar to the shift measured experimentally. Finally, we investigated the role of HIS30 and the effect of its protonation state on the E m values.


Assuntos
Teoria da Densidade Funcional , Método de Monte Carlo , Superóxido Dismutase/química , Cristalografia por Raios X , Oxirredução , Conformação Proteica , Água
4.
J Am Chem Soc ; 135(20): 7660-7, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23607903

RESUMO

A series of fcu-MOFs based on rare-earth (RE) metals and linear fluorinated/nonfluorinated, homo/heterofunctional ligands were targeted and synthesized. This particular fcu-MOF platform was selected because of its unique structural characteristics combined with the ability/potential to dictate and regulate its chemical properties (e.g., tuning of the electron-rich RE metal ions and high localized charge density, a property arising from the proximal positioning of polarizing tetrazolate moieties and fluoro-groups that decorate the exposed inner surfaces of the confined conical cavities). These features permitted a systematic gas sorption study to evaluate/elucidate the effects of distinctive parameters on CO2-MOF sorption energetics. Our study supports the importance of the synergistic effect of exposed open metal sites and proximal highly localized charge density toward materials with enhanced CO2 sorption energetics.


Assuntos
Dióxido de Carbono/química , Metais Terras Raras/química , Compostos Organometálicos/química , Termodinâmica , Adsorção , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Propriedades de Superfície
5.
Nanoscale ; 15(48): 19617-19628, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38018685

RESUMO

With the fast-growing global water crisis, the development of novel technologies for water remediation and reuse is crucial. Industrial wastewater especially contains various toxic pollutants that pose an additional threat to the environment; thus, efficient removal of such contaminants can ensure safe reprocessing of industrial wastewater, thereby alleviating the demand for fresh water. Herein, we describe a novel and efficient approach for preparing porous polycaprolactone (PCL) membranes with a hierarchical architecture via a simple solvent/non-solvent methodology. A mixed-matrix membrane (MMM) was further constructed utilizing an amine-functionalized metal-organic framework as the sorbent filler nanoparticles and PCL as the polymer support matrix (MOF@PCL) for wastewater treatment applications. The MOF@PCL MMM demonstrated homogeneous morphology as well as exceptional performance towards the removal of both cationic (methylene blue, MB) and anionic (methyl orange, MO) organic dyes, where the maximum adsorption capacities reached 309 mg g-1 and 208 mg g-1, respectively. Kinetic and thermodynamic investigations revealed that the adsorption process was endothermic with a fast intraparticle diffusion rate constant. The MOF@PCL MMM also displayed excellent mechanical stability and recyclability, where the removal efficiency was maintained after 10 cycles.

6.
Microorganisms ; 11(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37110336

RESUMO

Nosocomial infections caused by microbial biofilm formation on biomaterial surfaces such as urinary catheters are complicated by antibiotic resistance, representing a common problem in hospitalized patients. Therefore, we aimed to modify silicone catheters to resist microbial adherence and biofilm formation by the tested microorganisms. This study used a simple direct method to graft poly-acrylic acid onto silicone rubber films using gamma irradiation to endow the silicone surface with hydrophilic carboxylic acid functional groups. This modification allowed the silicone to immobilize ZnO nanoparticles (ZnO NPs) as an anti-biofilm. The modified silicone films were characterized by FT-IR, SEM, and TGA. The anti-adherence ability of the modified silicone films was evidenced by the inhibition of biofilm formation by otherwise strong biofilm-producing Gram-positive, Gram-negative, and yeast clinical isolates. The modified ZnO NPs grafted silicone showed good cytocompatibility with the human epithelial cell line. Moreover, studying the molecular basis of the inhibitory effect of the modified silicone surface on biofilm-associated genes in a selected Pseudomonas aeruginosa isolate showed that anti-adherence activity might be due to the significant downregulation of the expression of lasR, lasI, and lecB genes by 2, 2, and 3.3-fold, respectively. In conclusion, the modified silicone catheters were low-cost, offering broad-spectrum anti-biofilm activity with possible future applications in hospital settings.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38109475

RESUMO

Novel anion-exchange electrospun fiber membranes of polycaprolactone doped with the cationic, cross-linked colesevelam polymer are reported. The weight fraction of cross-linked cationic colesevelam polymer, as the active phase within the PCL matrix, can readily be controlled in the synthesis of the mixed-matrix fibers (Cole@PCL), enabling optimization of the ion-exchange properties of the resulted membranes. This approach enabled adaptation of anion-exchange resins to a permeable, flexible membrane form, which is a significant advancement toward futuristic water treatment applications, demonstrated herein for the removal of trace contaminants, including nitrates and phosphates, as well as anionic dyes. The Cole@PCL membranes demonstrated the dependence of contaminant uptake on the weight percentage of colesevelam in the mixed-matrix membrane. An optimal 10 wt % of colesevelam was identified, demonstrating a staggering ion removal capacity of 155.8 mg/g for nitrate, 177.6 mg/g for phosphate, and 70 mg/g for Methyl Orange.

8.
RSC Adv ; 12(10): 6025-6036, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424567

RESUMO

ZIF-8 is well known hybrid material that is self-assembled from inorganic and organic moieties. It has several potential applications due to its unique structure. One of these potential applications is in advanced oxidation processes (AOP) via a heterogeneous catalysis system. The use of modified ZIF-8/H2O2 for the destruction of the azo dye methyl orange (MO) is presented in this work to explore its efficacy. This work presents the bimetallic Co/Zn-ZIF-8 as an efficient catalyst to promote H2O2 oxidation of the MO dye. Co/Zn-ZIF-8 was synthesized through a hydrothermal process, and the pristine structure was confirmed using XRD, FTIR, and XPS. The Co/Zn-ZIF-8/H2O2 system successfully decolorized MO at the selected pH 6.5. It was found that more than 90% of MO (10 ppm) was degraded within only about 50 minutes. Proposed radical and redox mechanisms are presented for H2O2 decomposition where the redox mechanism is suggested to predominate via a Co(ii)/Co(iii) redox consecutive cyclic process.

9.
Biomater Sci ; 10(5): 1342-1351, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35107101

RESUMO

Adenosine is a small molecule directly involved in maintaining homeostasis under pathological and stressful conditions. Due to its rapid metabolism, delivery vehicles capable of exhibiting extended release of adenosine are of paramount interest. Herein, we demonstrate a superior long-term (9 days) release profile of adenosine from biocompatible MOFs in a physiologically relevant environment. The key to the biocompatibility of MOFs is their stability under biologically relevant conditions. This study additionally highlights the interplay between the chemical stability of prototypal MOFs, assessed under physiological conditions, and their cytotoxicity profiles. Cytotoxicity of the prototypal Zn-based MOF (ZIF-8) and three Zr-based MOFs (UiO-66, UiO-66-NH2, and MOF-801) on six cell types was assessed. The cell types selected were valve interstitial cells (VICs), valve endothelial cells (VECs), adipose tissue-derived stem cells (ADSCs), and cell lines U937, THP1, and HeLa. Zr-based MOFs demonstrated a wide tolerance range in the cell culture cytotoxicity assays, demonstrating cell viability up to a very high dose of ∼1000 µg mL-1, as compared to ZIF-8 which showed notable cytotoxicity in as little as ∼100 µg mL-1 dose. This study demonstrates, for the first time, the utilization of biocompatible MOFs for adenosine delivery as well as establishes a direct link between structural instability in the cell culture medium and the observed cytotoxicity of the studied MOFs.


Assuntos
Estruturas Metalorgânicas , Compostos Organometálicos , Adenosina , Células Endoteliais , Humanos , Estruturas Metalorgânicas/química , Ácidos Ftálicos
10.
J Am Chem Soc ; 133(36): 14204-7, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21819086

RESUMO

A new blueprint network for the design and synthesis of porous, functional 3D metal-organic frameworks (MOFs) has been identified, namely, the tbo net. Accordingly, tbo-MOFs based on this unique (3,4)-connected net can be exclusively constructed utilizing a combination of well-known and readily targeted [M(R-BDC)](n) MOF layers [i.e., supermolecular building layers (SBLs)] based on the edge-transitive 4,4 square lattice (sql) (i.e., 2D four-building units) and a novel pillaring strategy based on four proximal isophthalate ligands from neighboring SBL membered rings (i.e., two pairs from each layer) covalently cross-linked through an organic quadrangular core (e.g., tetrasubstituted benzene). Our strategy permits the rational design and synthesis of isoreticular structures, functionalized and/or expanded, that possess extra-large nanocapsule-like cages, high porosity, and potential for gas separation and storage, among others. Thus, tbo-MOF serves as an archetypal tunable, isoreticular MOF platform for targeting desired applications.

11.
Dalton Trans ; 50(15): 5311-5317, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881028

RESUMO

Current interest in investigating non-precious group (NPG) metals for catalyzing the oxygen evolution reaction (OER) has revealed that doping of Ni hydroxides with Fe results in the dramatic enhancement of catalytic activity. Herein, a facile pathway to construct tetrataenite, an NiFe alloy of extraterrestrial origin and to address the limited electrical conductivity of metal oxides/hydroxides by directly constructing them atop graphene sheets is described. In this approach, a one-pot, bottom-up assembly of hybrid ultramicroporous materials (HUMs) was carried out, in the presence of suspended graphene (G), to homogeneously deposit the HUMs on unmodified graphene sheets, affording HUMs@G. Single metal (SIFSIX-3-Ni@G) and mixed metal (SIFSIX-3-NiFe@G) HUMs can be readily synthesized from their respective metal salts to afford a well-designed catalyst for the OER. The pyrolysis of SIFSIX-3-NiFe@G resulted in the deposition of the nanoalloy tetrataenite on G, demonstrating an exceptionally low OER onset potential of 1.44 V vs. RHE and reduced overpotential at 10 mA cm-2 (η10 = 266 mV). The synergy between the composition of the active catalyst and the electronically conductive support was attained by designing a reaction system encoding the self-assembly of a crystalline pre-catalyst on G sheets.

12.
Membranes (Basel) ; 11(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804254

RESUMO

In the context of thin film nanotechnologies, metal-organic frameworks (MOFs) are currently intensively explored in the context of both, novel applications and as alternatives to existing materials. When it comes to applications under relatively harsh conditions, in several cases it has been noticed that the stability of MOF thin films deviates from the corresponding standard, powdery form of MOFs. Here, we subjected SURMOFs, surface-anchored MOF thin films, fabricated using layer-by layer methods, to a thorough characterization after exposure to different harsh aqueous environments. The stability of three prototypal SURMOFs, HKUST-1, ZIF-8, and UiO-66-NH2 was systematically investigated in acidic, neutral, and basic environments using X-ray diffraction and electron microscopy. While HKUST-1 films were rather unstable in aqueous media, ZIF-8 SURMOFs were preserved in alkaline environments when exposed for short periods of time, but in apparent contrast to results reported in the literature for the corresponding bulk powders- not stable in neutral and acidic environments. UiO-66-NH2 SURMOFs were found to be stable over a large window of pH values.

13.
Biochem Biophys Rep ; 24: 100798, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32844124

RESUMO

The susceptibility of different populations to SARS-CoV-2 infection is not yet understood. Here, we combined ACE2 coding variants' analysis in different populations and computational chemistry calculations to probe the effects on SARS-CoV-2/ACE2 interaction. ACE2-K26R; which is most frequent in Ashkenazi Jewish population decreased the SARS-CoV-2/ACE2 electrostatic attraction. On the contrary, ACE2-I468V, R219C, K341R, D206G, G211R increased the electrostatic attraction; ordered by binding strength from weakest to strongest. The aforementioned variants are most frequent in East Asian, South Asian, African and African American, European, European and South Asian populations, respectively.

14.
ACS Appl Mater Interfaces ; 12(24): 27625-27631, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32496035

RESUMO

Despite the large number of reports on the utilization of highly microporous solids, most relevant are metal-organic frameworks (MOFs), in different demanding applications, the successful hybridization of MOFs and moldable polymer matrices into flexible, water-permeable membranes exhibiting strong entanglement of the MOF and the polymer matrix properties is still lacking. We describe herein an efficient pathway to construct a mixed-matrix membrane (MMM) comprising a water-stable metal-organic framework (UiO-66-NH2), as the active sorbent, and cellulose acetate (CA), as the polymer matrix, to construct a flexible membrane for water treatment applications. The MOF@CA MMM demonstrated superior performance in terms of exceptional removal of organic dyes (both cationic and anionic species) as well as hexavalent Cr ions, compared to the control CA membrane. The recorded high uptake of the MOF@CA MMM for this wide array of contaminants demonstrated the accessibility of the MOF nanocages immobilized within the MMM, in contrast to the common perception that the polymer matrix might act as a physical barrier to block the accessibility of the MOF cages. The negative surface charge of the matrix exerted a notable action to affect the diffusion of the negatively charged contaminants to reach the active sorbent filler. Moreover, the formed membrane demonstrated high durability and recyclability with no detected loss of performance over numerous cycles. This approach outlines the ability to formulate one of the most water-stable MOFs, as exceptional microporous sorbent, into a usable membrane form compatible with real-life applications.

15.
ACS Omega ; 5(14): 7885-7894, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309697

RESUMO

Poly(ethylene oxide) (PEO)-based composite polymer electrolytes (CPEs) containing the amine-functionalized, zirconium-based metal-organic framework @silica (UiO-66-NH2@SiO2) and lithium, LiN(CF3SO2)2 salt (LiTFSI) are prepared using a simple hot press method. The electrochemical properties such as compatibility of the electrolyte with the Li metal anode, Li transference number, and ionic conductivity are investigated for the different systems containing different relative concentrations of the additives. The incorporation of UiO-66-NH2@SiO2 in the PEO-LiTFSI matrix not only enhanced ionic conductivity by one order of magnitude but also offered better compatibility and suppressed the formation of lithium dendrites appreciably. X-ray photoelectron spectroscopy studies on post-cycled materials revealed the formation of lithium alkoxide (RO-Li) on the cathode and Li2O on the anode. The coin cell (2032-type) consisting of LiFePO4/CPE/Li with UiO-66-NH2@SiO2 as filler provided a discharge capacity of 151 mA h g-1 at 0.1 C-rate at 60 °C, measurably higher than control experiments utilizing SiO2 and UiO-66-NH2. The notable enhancement of electrochemical properties when incorporating the UiO-66-NH2@SiO2 at the CPE was attributed to formation of more uniform ion conduction pockets and channels within the PEO matrix, facilitated by the presence of the microporous UiO-66-NH2@SiO2. The enhanced distribution of microporous channels, where Li ions are assumed to percolate through within the matrix, is assumed to desirably reduce formation of Li dendrites by increasing diffusion channels and therefore reducing crystallization and growth of dendrites at the electrode surface.

16.
ChemistryOpen ; 9(5): 514, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32373420

RESUMO

Invited for this month's cover is the group of Dr. Tawheed Hashem from the Karlsruhe Institute of Technology. The cover picture shows a successful synthesis of high quality, monolithic UiO-66-NH2 MOF thin films on diverse solid substrates via a low-temperature liquid phase epitaxy method. The achievement of continuous MOF-coatings with low defect densities and pronounced stability against high temperatures and hot water was proven. The new type of coatings clearly outperforms other reported types of MOF thin films. Read the full text of their Communication at https://doi.org/10.1002/open.201900324.

17.
ChemistryOpen ; 9(5): 515-518, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32373421

RESUMO

High quality, monolithic UiO-66-NH2 thin films on diverse solid substrates have been prepared via a low temperature liquid phase epitaxy method. The achievement of continuous films with low defect densities and great stability against high temperatures and hot water is proven, clearly outperforming other reported types of MOF thin films.

18.
J Am Chem Soc ; 131(49): 17753-5, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19921841

RESUMO

Two zeolite-like metal-organic frameworks (ZMOFs) with lta- and ast- topologies, zeolitic nets that can be interpreted as augmented edge-transitive 8-connected nets, are targeted through directed self-assembly of metal-organic cubes (MOCs) as supermolecular building blocks (SBBs).

19.
ACS Appl Mater Interfaces ; 11(6): 6442-6447, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30701956

RESUMO

We present a novel approach to produce a composite of the HKUST-1 metal-organic framework (MOF) and graphene, which is suited for the fabrication of monolithic coatings of solid substrates. In order to avoid the degradation of graphene electrical properties resulting from chemical functionalization (e.g., oxidation yielding graphene oxide, GO), commercial, nonmodified graphene was utilized. The one-pot synthesis of the moldable composite material allows for a controllable loading of graphene and the tuning of porosity. Potentially, this facile synthesis can be transferred to other MOF systems. The monolithic coatings reported here exhibit high surface areas (1156-1078 m2/g). The electrical conductivity was high (a range of 7.6 × 10-6 S m-1to 6.4 × 10-1 S m-1) and was found to be proportional to the graphene content. The ability to readily attain different forms and shapes of the conductive, microporous composites indicates that the MOF@G system can provide a compelling approach to access various applications of MOFs, specifically in electrochemical catalysis, supercapacitors, and sensors.

20.
J Am Chem Soc ; 130(38): 12639-41, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18759392

RESUMO

The extra-large cavities of zeolite-like metal-organic frameworks (ZMOFs) offer great potential for their exploration in applications pertinent to larger molecules, like porphyrins. The anionic nature of the framework allowed for facile in situ encapsulation of a cationic free-base porphyrin, and the alpha-cage of our (In-imidazoledicarboxylate)-based rho-ZMOF is ideally suited to the isolation of one porphyrin molecule per cage, which prevents the oxidative self-degradation associated with self-dimerization common in homogeneous catalysis and upon aggregation in solid supports like mesoporous silicates or polymers. The encapsulation of a free-base porphyrin [5,10,15,20-tetrakis(1-methyl-4- pyridinio)porphyrin] and the stability of the rho-ZMOF to metalation conditions, allows for the preparation of a variety of metalloporphyrins (i.e., Mn, Cu, Co, Zn ions) with the ZMOF serving as a platform. The Mn-metallated porphyrin encapsulated in rho-ZMOF shows catalytic activity toward the oxidation of cyclohexane, with turn-over numbers, to the best of our knowledge, higher than reported for similar heterogeneous systems, and our system can be recycled up to 11 cycles, which represents a longer lifetime than reported for any other system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA