Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photosynth Res ; 155(1): 23-34, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36197600

RESUMO

Insight into control of proton transfer, a crucial attribute of cellular functions, can be gained from investigations of bacterial reaction centers. While the uptake of protons associated with the reduction of the quinone is well characterized, the release of protons associated with the oxidized bacteriochlorophyll dimer has been poorly understood. Optical spectroscopy and proton release/uptake measurements were used to examine the proton release characteristics of twelve mutant reaction centers, each containing a change in an amino acid residue near the bacteriochlorophyll dimer. The mutant reaction centers had optical spectra similar to wild-type and were capable of transferring electrons to the quinones after light excitation of the bacteriochlorophyll dimer. They exhibited a large range in the extent of proton release and in the slow recovery of the optical signal for the oxidized dimer upon continuous illumination. Key roles were indicated for six amino acid residues, Thr L130, Asp L155, Ser L244, Arg M164, Ser M190, and His M193. Analysis of the results points to a hydrogen-bond network that contains these residues, with several additional residues and bound water molecules, forming a proton transfer pathway. In addition to proton transfer, the properties of the pathway are proposed to be responsible for the very slow charge recombination kinetics observed after continuous illumination. The characteristics of this pathway are compared to proton transfer pathways near the secondary quinone as well as those found in photosystem II and cytochrome c oxidase.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Prótons , Aminoácidos/metabolismo , Rhodobacter sphaeroides/metabolismo , Bacterioclorofilas/metabolismo , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Transporte de Elétrons , Oxirredução
2.
Photosynth Res ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910331

RESUMO

Hybrid complexes incorporating synthetic Mn-porphyrins into an artificial four-helix bundle domain of bacterial reaction centers created a system to investigate new electron transfer pathways. The reactions were initiated by illumination of the bacterial reaction centers, whose primary photochemistry involves electron transfer from the bacteriochlorophyll dimer through a series of electron acceptors to the quinone electron acceptors. Porphyrins with diphenyl, dimesityl, or fluorinated substituents were synthesized containing either Mn or Zn. Electrochemical measurements revealed potentials for Mn(III)/Mn(II) transitions that are ~ 0.4 V higher for the fluorinated Mn-porphyrins than the diphenyl and dimesityl Mn-porphyrins. The synthetic porphyrins were introduced into the proteins by binding to a four-helix bundle domain that was genetically fused to the reaction center. Light excitation of the bacteriochlorophyll dimer of the reaction center resulted in new derivative signals, in the 400 to 450 nm region of light-minus-dark spectra, that are consistent with oxidation of the fluorinated Mn(II) porphyrins and reduction of the diphenyl and dimesityl Mn(III) porphyrins. These features recovered in the dark and were not observed in the Zn(II) porphyrins. The amplitudes of the signals were dependent upon the oxidation/reduction midpoint potentials of the bacteriochlorophyll dimer. These results are interpreted as photo-induced charge-separation processes resulting in redox changes of the Mn-porphyrins, demonstrating the utility of the hybrid artificial reaction center system to establish design guidelines for novel electron transfer reactions.

3.
Photochem Photobiol Sci ; 21(1): 91-99, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34850374

RESUMO

In this paper we report the design of hybrid reaction centers with a novel redox-active cofactor. Reaction centers perform the primary photochemistry of photosynthesis, namely the light-induced transfer of an electron from the bacteriochlorophyll dimer to a series of electron acceptors. Hybrid complexes were created by the fusion of an artificial four-helix bundle to the M-subunit of the reaction center. Despite the large modification, optical spectra show that the purified hybrid reaction centers assemble as active complexes that retain the characteristic cofactor absorption peaks and are capable of light-induced charge separation. The four-helix bundle could bind iron-protoporphyrin in either a reduced and oxidized state. After binding iron-protoporphyrin to the hybrid reaction centers, light excitation results in a new derivative signal with a maximum at 402 nm and minimum at 429 nm. This signal increases in amplitude with longer light durations and persists in the dark. No signal is observed when iron-protoporphyrin is added to reaction centers without the four-helix bundle domain or when a redox-inactive zinc-protoporphyrin is bound. The results are consistent with the signal arising from a new redox reaction, electron transfer from the iron-protoporphyrin to the oxidized bacteriochlorophyll dimer. These outcomes demonstrate the feasibility of binding porphyrins to the hybrid reaction centers to gain new light-driven functions.


Assuntos
Porfirinas , Bacterioclorofilas/metabolismo , Transporte de Elétrons , Ferro , Oxirredução
4.
Biochim Biophys Acta ; 1827(8-9): 914-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23466333

RESUMO

As discussed throughout this special issue, oxidation and reduction reactions play critical roles in the function of many organisms. In photosynthetic organisms, the conversion of light energy drives oxidation and reduction reactions through the transfer of electrons and protons in order to create energy-rich compounds. These reactions occur in proteins such as cytochrome c, a heme-containing water-soluble protein, the bacteriochlorophyll-containing reaction center, and photosystem II where water is oxidized at the manganese cluster. A critical measure describing the ability of cofactors in proteins to participate in such reactions is the oxidation/reduction midpoint potential. In this review, the basic concepts of oxidation/reduction reactions are reviewed with a summary of the experimental approaches used to measure the midpoint potential of metal cofactors. For cofactors in proteins, the midpoint potential not only depends upon the specific chemical characteristics of cofactors but also upon interactions with the surrounding protein, such as the nature of the coordinating ligands and protein environment. These interactions can be tailored to optimize an oxidation/reduction reaction carried out by the protein. As examples, the midpoint potentials of hemes in cytochromes, bacteriochlorophylls in reaction centers, and the manganese cluster of photosystem II are discussed with an emphasis on the influence that protein interactions have on these potentials. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.


Assuntos
Metaloproteínas/química , Modelos Moleculares , Oxirredução , Água/química
5.
Photosynth Res ; 120(1-2): 87-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23575738

RESUMO

This review presents a broad overview of the research that enabled the structure determination of the bacterial reaction centers from Blastochloris viridis and Rhodobacter sphaeroides, with a focus on the contributions from Duysens, Clayton, and Feher. Early experiments performed in the laboratory of Duysens and others demonstrated the utility of spectroscopic techniques and the presence of photosynthetic complexes in both oxygenic and anoxygenic photosynthesis. The laboratories of Clayton and Feher led efforts to isolate and characterize the bacterial reaction centers. The availability of well-characterized preparations of pure and stable reaction centers allowed the crystallization and subsequent determination of the structures using X-ray diffraction. The three-dimensional structures of reaction centers revealed an overall arrangement of two symmetrical branches of cofactors surrounded by transmembrane helices from the L and M subunits, which also are related by the same twofold symmetry axis. The structure has served as a framework to address several issues concerning bacterial photosynthesis, including the directionality of electron transfer, the properties of the reaction center-cytochrome c 2 complex, and the coupling of proton and electron transfer. Together, these research efforts laid the foundation for ongoing efforts to address an outstanding question in oxygenic photosynthesis, namely the molecular mechanism of water oxidation.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/metabolismo , Fotossíntese/fisiologia , Rodopseudomonas/metabolismo , Difração de Raios X
6.
Photosynth Res ; 120(1-2): 207-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23868400

RESUMO

The electronic structure of a Mn(II) ion bound to highly oxidizing reaction centers of Rhodobacter sphaeroides was studied in a mutant modified to possess a metal binding site at a location comparable to the Mn4Ca cluster of photosystem II. The Mn-binding site of the previously described mutant, M2, contains three carboxylates and one His at the binding site (Thielges et al., Biochemistry 44:389-7394, 2005). The redox-active Mn-cofactor was characterized using electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies. In the light without bound metal, the Mn-binding mutants showed an EPR spectrum characteristic of the oxidized bacteriochlorophyll dimer and reduced quinone whose intensity was significantly reduced due to the diminished quantum yield of charge separation in the mutant compared to wild type. In the presence of the metal and in the dark, the EPR spectrum measured at the X-band frequency of 9.4 GHz showed a distinctive spin 5/2 Mn(II) signal consisting of 16 lines associated with both allowed and forbidden transitions. Upon illumination, the amplitude of the spectrum is decreased by over 80 % due to oxidation of the metal upon electron transfer to the oxidized bacteriochlorophyll dimer. The EPR spectrum of the Mn-cofactor was also measured at the Q-band frequency of 34 GHz and was better resolved as the signal was composed of the six allowed electronic transitions with only minor contributions from other transitions. A fit of the Q-band EPR spectrum shows that the Mn-cofactor is a high spin Mn(II) species (S = 5/2) that is six-coordinated with an isotropic g-value of 2.0006, a weak zero-field splitting and E/D ratio of approximately 1/3. The ESEEM experiments showed the presence of one (14)N coordinating the Mn-cofactor. The nitrogen atom is assigned to a His by comparing our ESEEM results to those previously reported for Mn(II) ions bound to other proteins and on the basis of the X-ray structure of the M2 mutant that shows the presence of only one His, residue M193, that can coordinate the Mn-cofactor. Together, the data allow the electronic structure and coordination environment of the designed Mn-cofactor in the modified reaction centers to be characterized in detail and compared to those observed in other proteins with Mn-cofactors.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Manganês/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Transporte de Elétrons/fisiologia , Fotossíntese/fisiologia
7.
Biochemistry ; 50(16): 3310-20, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21375274

RESUMO

The energetics of a Mn cofactor bound to modified reaction centers were determined, including the oxidation/reduction midpoint potential and free energy differences for electron transfer. To determine these properties, a series of mutants of Rhodobacter sphaeroides were designed that have a metal-ion binding site that binds Mn2+ with a dissociation constant of 1 µM at pH 9.0 (Thielges et al. (2005) Biochemistry 44, 7389-7394). In addition to the Mn binding site, each mutant had changes near the bacteriochlorophyll dimer, P, that resulted in altered P/P+ oxidation/reduction midpoint potentials, which ranged from 480 mV to above 800 mV compared to 505 mV for wild type. The bound Mn2+ is redox active and after light excitation can rapidly reduce the oxidized primary electron donor, P+. The extent of P+ reduction was found to systematically range from a full reduction in the mutants with high P/P+ midpoint potentials to no reduction in the mutant with a potential comparable to wild type. This dependence of the extent of Mn2+ oxidation on the P/P+ midpoint potential can be understood using an equilibrium model and the Nernst equation, yielding a Mn2+/Mn3+ oxidation/reduction midpoint potential of 625 mV at pH 9. In the presence of bicarbonate, the Mn2+/Mn3+ potential was found to be 90 mV lower with a value of 535 mV suggesting that the bicarbonate serves as a ligand to the bound Mn. Measurement of the electron transfer rates yielded rate constants for Mn2+ oxidation ranging from 30 to 120 s(-1) as the P/P+ midpoint potentials increased from 670 mV to approximately 805 mV in the absence of bicarbonate. In the presence of bicarbonate, the rates increased for each mutant with values ranging from 65 to 165 s(-1), reflecting an increase in the free energy difference due to the lower Mn2+/Mn3+ midpoint potential. This dependence of the rate constant on the P/P+ midpoint potential can be understood using a Marcus relationship that yielded limits of at least 150 s(-1) and 290 meV for the maximal rate constant and reorganization energy, respectively. The implications of these results are discussed in terms of the energetics of proteins with redox active Mn cofactors, in particular, the Mn4Ca cofactor of photosystem II.


Assuntos
Manganês/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Bacterioclorofilas/metabolismo , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética
8.
Biochemistry ; 50(23): 5249-62, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21561160

RESUMO

Light-induced hypsochromic shifts of the Q(y) absorption band of the bacteriochlorophyll dimer (P) from 865 to 850 nm were identified using continuous illumination of dark-adapted reaction centers (RCs) from Rhodobacter capsulatus when dispersed in the most commonly used detergent, the zwitterionic lauryl N-dimethylamine-N-oxide. Such a shift is known to be the consequence of the decreased degree of delocalization of P. A 2-fold acceleration of the recovery kinetics of P(+) was found in RCs that underwent light-induced structural changes compared to those where the P-band position did not change. The light-induced shift was irreversible except in the presence of a secondary electron donor. Prolonged (15 min) illumination resulted in a shift in the position of the P-band even in neutral or negatively charged detergents. In contrast, RCs reconstituted into liposomes made from lipids with different headgroup charges showed light-induced shifts only if shorter fatty acid chains were used. The light-induced conformational changes caused a prominent decrease of the redox potential of P ranging from 120 to 160 mV depending on the detergent compared to the potential of P in dark-adapted reaction centers. The measured light-induced potential decreases were 55 to 85 mV larger than those reported for reaction centers where the P-band position remained at 865 nm. The influence of structural factors, such as the delocalization of the electron hole on P(+), the involvement of Tyr M210, and the hydrophobic mismatch between the thickness of the hydrophobic belt of the detergent micelles or the lipid bilayer and the RC protein, on the spectral features and electron transfer kinetics is discussed.


Assuntos
Detergentes/química , Bicamadas Lipídicas/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/metabolismo , Transporte de Elétrons , Cinética , Lipossomos , Micelas , Modelos Moleculares , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Conformação Proteica , Tirosina/química , Tirosina/metabolismo
9.
Photosynth Res ; 107(1): 59-69, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20449659

RESUMO

In photosynthetic organisms, such as purple bacteria, cyanobacteria, and plants, light is captured and converted into energy to create energy-rich compounds. The primary process of energy conversion involves the transfer of electrons from an excited donor molecule to a series of electron acceptors in pigment-protein complexes. Two of these complexes, the bacterial reaction center and photosystem II, are evolutionarily related and structurally similar. However, only photosystem II is capable of performing the unique reaction of water oxidation. An understanding of the evolutionary process that lead to the development of oxygenic photosynthesis can be found by comparison of these two complexes. In this review, we summarize how insight is being gained by examination of the differences in critical functional properties of these complexes and by experimental efforts to alter pigment-protein interactions of the bacterial reaction center in order to enable it to perform reactions, such as amino acid and metal oxidation, observable in photosystem II.


Assuntos
Evolução Biológica , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema II/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clorofila/metabolismo , Cianobactérias/química , Cianobactérias/genética , Cianobactérias/metabolismo , Transporte de Elétrons , Elétrons , Manganês/química , Manganês/metabolismo , Oxirredução , Oxigênio/química , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Plantas/química , Plantas/genética , Plantas/metabolismo , Proteobactérias/química , Proteobactérias/genética , Proteobactérias/metabolismo , Prótons , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Água/química
10.
Biochemistry ; 49(6): 1146-59, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20067231

RESUMO

The influence of hydrogen bonds on the electronic structure of the light-harvesting I complex from Rhodobacter sphaeroides has been examined by site-directed mutagenesis, steady-state optical spectroscopy, and Fourier-transform resonance Raman spectroscopy. Shifts of 4-23 nm in the Q(y) absorption band were observed in seven mutants with single or double changes at Leu alpha44, Trp alpha43, and Trp beta48. Resonance Raman spectra were consistent with the loss of a hydrogen bond with the alteration of either Trp alpha43 or Trp beta48 to Phe. However, when the Trp alpha43 to Phe alteration is combined with Leu alpha44 to Tyr, the spectra show that the loss of the hydrogen bond to alpha43 is compensated by the addition of a new hydrogen bond to Tyr alpha44. Comparison of the absorption and vibrational spectra of the seven mutants suggests that changes in the absorption spectra can be interpreted as being due to both structural and hydrogen-bonding changes. To model these changes, the structural and hydrogen bond changes are considered to be independent of each other. The calculated shifts agree within 1 nm of the observed values. Excellent agreement is also found assuming that the structural changes arise from rotations of the C3-acetyl group conformation and hydrogen bonding. These results provide the basis for a simple model that describes the effect of hydrogen bonds on the electronic structures of the wild-type and mutant light-harvesting I complexes and also is applicable for the light-harvesting II and light-harvesting III complexes. Other possible effects of the mutations, such as changes in the disorder of the environment of the bacteriochlorophylls, are discussed.


Assuntos
Proteínas de Bactérias/química , Elétrons , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/enzimologia , Proteínas de Bactérias/genética , Bacterioclorofilas/química , Análise de Fourier , Ligação de Hidrogênio , Complexos de Proteínas Captadores de Luz/genética , Mutagênese Sítio-Dirigida , Fenilalanina/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Rhodobacter sphaeroides/genética , Espectrofotometria , Análise Espectral Raman , Triptofano/genética
11.
Biochemistry ; 49(40): 8689-99, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20822107

RESUMO

The creation of synthetic enzymes with predefined functions represents a major challenge in future synthetic biology applications. Here, we describe six structures of de novo proteins that have been determined using protein crystallography to address how simple enzymes perform catalysis. Three structures are of a protein, DX, selected for its stability and ability to tightly bind ATP. Despite the addition of ATP to the crystallization conditions, the presence of a bound but distorted ATP was found only under excess ATP conditions, with ADP being present under equimolar conditions or when crystallized for a prolonged period of time. A bound ADP cofactor was evident when Asp was substituted for Val at residue 65, but ATP in a linear configuration is present when Phe was substituted for Tyr at residue 43. These new structures complement previously determined structures of DX and the protein with the Phe 43 to Tyr substitution [Simmons, C. R., et al. (2009) ACS Chem. Biol. 4, 649-658] and together demonstrate the multiple ADP/ATP binding modes from which a model emerges in which the DX protein binds ATP in a configuration that represents a transitional state for the catalysis of ATP to ADP through a slow, metal-free reaction capable of multiple turnovers. This unusual observation suggests that design-free methods can be used to generate novel protein scaffolds that are tailor-made for catalysis.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas/química , Proteínas/metabolismo , Biologia Sintética , Cristalografia por Raios X , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
12.
Photosynth Res ; 102(2-3): 231-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19322673

RESUMO

Protein crystallography is the predominately used technique for the determination of the three-dimensional structures of proteins and other macromolecules. In this article, the methodology utilized for the measurement and analysis of the diffraction data from crystals is briefly reviewed. As examples of both the usefulness and difficulties of this technique, the determination of the structures of several photosynthetic pigment-protein complexes is described, namely, the reaction center from purple bacteria, photosystem I and photosystem II from cyanobacteria, the light-harvesting complex II from purple bacteria, and the FMO protein from green bacteria.


Assuntos
Coenzimas/química , Cristalografia por Raios X/métodos , Proteínas/química , Fotossíntese , Pigmentos Biológicos/química , Estatística como Assunto
13.
Br J Oral Maxillofac Surg ; 45(3): 238-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16207506

RESUMO

Warthin's tumour is a benign adenoma in the parotid gland, but extraparotid and synchronous bilateral Warthin's tumours may occur. In this report, we describe a patient with simultaneous bilateral involvement of the parotid glands and neck by multiple Warthin's tumours, an occurrence not previously described.


Assuntos
Adenolinfoma/diagnóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias Parotídeas/diagnóstico , Idoso , Células Epiteliais/patologia , Humanos , Linfonodos/patologia , Masculino , Células Oxífilas/patologia
14.
Theory Pract ; 56(1): 38-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28845060

RESUMO

In the My Teaching Partner (MTP) program, coaches engage teachers in six to nine coaching cycles across a school year. Guided by the program's theory, coaches help teachers reflect on the emotional, organizational, and instructional features of classrooms. MTP was originally developed for Pre-K and early elementary classrooms (MTP Pre-K), but the current paper focuses on the secondary school version of this program, MTP-Secondary (MTP-S), given the need for coaching models with middle and high school teachers. The paper presents the guiding theory of MTP-S and how it relates to key components of the coaching cycle. We then offer a brief synthesis of research demonstrating its effectiveness in raising achievement, promoting positive peer interactions, and reducing racial disparities in teachers' discipline practices. We provide ideas for future research that would help advance theory on the essential components of effective coaching programs in secondary schools.

15.
J Mol Biol ; 271(3): 456-71, 1997 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-9268671

RESUMO

The bacteriochlorophyll (BChl) a protein from Chlorobium tepidum, which participates in energy transfer in green photosynthetic bacteria, has been crystallized using the sitting drop method of vapor diffusion. X-ray diffraction data collected from these crystals indicate that the crystals belong to the cubic space group P4132 with cell dimensions of a=b=c=169.5 A. A native X-ray diffraction data set has been collected to a resolution of 2.2 A. The initial solution was determined by using the molecular replacement method using the structure of the previously solved BChl a protein from Prosthecochloris aestuarii. A unique rotation and translation solution was obtained for two monomers in the asymmetric unit giving a pseudo-body centered packing. After rebuilding and refinement the model yields an R factor of 19.0%, a free R-factor of 28.3%, and good geometry with root-mean-square deviations of 0.013 A and 2.1 degrees for the bond lengths and angles, respectively. The structure of the BChl a protein from C. tepidum consists of three identical subunits related by a 3-fold axis of crystallographic symmetry. In each subunit the polypeptide backbone forms large beta-sheets and encloses a central core of seven BChl a molecules. The distances between neighboring bacteriochlorin systems within a subunit range between 4 A to 11 A and that between two bacteriochlorins from different subunits is more than 20 A. The overall structure is comparable with that of P. aestuarii but significant differences are observed for the individual bacteriochlorophyll structures. The surface of the trimer has a hydrophobic region that is modeled as the complex being a peripheral membrane protein partially embedded in the membrane. A general model is presented for the membrane organization with two of the bacteriochlorophyll structures in the membrane and transferring energy to the reaction center complex. In this model these two bacteriochlorophyll structures serve a similar role to the cofactors of integral membrane light-harvesting complexes although the protein structure surrounding the cofactors is significantly different for the BChl a protein compared with the integral membrane complexes.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofilas/química , Chlorobi/química , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Membrana Celular/metabolismo , Cristalografia por Raios X , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz , Modelos Moleculares , Complexo de Proteínas do Centro de Reação Fotossintética/química , Conformação Proteica , Tirosina
16.
Artigo em Inglês | MEDLINE | ID: mdl-16511142

RESUMO

Crystals have been obtained of wild-type reaction centers from Rhodobacter sphaeroides using manganese chloride as a precipitating agent. The crystals belong to the tetragonal space group P4(2)22, with unit-cell parameters a = b = 207.8, c = 107.5 A. The crystal structure has been determined to a resolution limit of 4.6 A using a previously determined structure of the reaction center as a molecular-replacement model. The calculated electron-density maps show the presence of a manganese ion at one of the crystal contact points bridging two symmetry-related histidine residues, suggesting that the metal plays a key role in facilitating the crystallization of the protein in this form.


Assuntos
Manganês/química , Manganês/metabolismo , Rhodobacter sphaeroides/química , Cristalização , Difusão , Modelos Moleculares
17.
Arch Intern Med ; 155(16): 1726-30, 1995 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-7654105

RESUMO

Considering the prevalence of excessive alcohol use, its adverse consequences on physical and emotional well-being, and the high degree of responsivity of early-stage drinking problems to brief intervention, screening for alcohol abuse is warranted in medical practice. We describe several practical self-report tests that can help primary care physicians screen their patients for alcohol abuse. Two of the more popular tests, the Michigan Alcoholism Screening Test and the CAGE (an acronym for questions about cutting down on drinking, annoyance at others' concern about drinking, feeling guilty about drinking, and using alcohol as an eye-opener in the morning), are comparable in sensitivity and specificity. Either test is appropriate, but the brevity of CAGE generally gives it an advantage in a busy medical office. Three new tests, the Alcohol Use Disorders Identification Test, the Adolescent Drinking Index, and the TWEAK also are promising. We offer guidelines for selection of screening tests for primary care practice.


Assuntos
Alcoolismo/diagnóstico , Alcoolismo/prevenção & controle , Programas de Rastreamento/métodos , Atenção Primária à Saúde , Humanos , Inquéritos e Questionários
18.
Adv Space Res ; 35(9): 1544-51, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16175677

RESUMO

During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth(R) facility (Silverstone et al., Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base, Advances in Space Research 31(1) (2003) 69-75; Allen and Alling, The design approach for Mars On Earth(R), a biospheric closed system testing facility for long-term space habitation, American Institute of Aeronautics and Astronautics Inc., IAC-02-IAA.8.2.02, 2002).


Assuntos
Sistemas Ecológicos Fechados , Sistemas de Manutenção da Vida , Solo/análise , Agricultura/métodos , Ar Condicionado , Bacillus , Biomassa , Umidade , Concentração de Íons de Hidrogênio , Ipomoea batatas/crescimento & desenvolvimento , Nitrogênio , Controle de Pragas/métodos , Fósforo , Microbiologia do Solo , Glycine max/crescimento & desenvolvimento , Voo Espacial , Simulação de Ambiente Espacial , Esporos Fúngicos , Temperatura , Triticum/crescimento & desenvolvimento
19.
Adv Space Res ; 35(9): 1539-43, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16175676

RESUMO

Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.4 mol m-2 d-1 over 84 days. Average biomass was 1395 g m-2, 16.0 g m-2 d-1 and average seed production was 689 g m-2 and 7.9 g m-2 d-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8 g m-2 d-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 d-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 d-1 vs. 566.5 g m-2 and 6.5 g m-2 d-1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m-2 d-1. Temperature regime was 28 +/- 3 degrees C day/22 +/- 4 degrees C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m-2 d-1 wet weight and 11.3 g m-2 d-1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol-1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol-1 wet weight and 0.34 g mol-1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22 g mol-1 was in-between those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher.


Assuntos
Biomassa , Sistemas Ecológicos Fechados , Ipomoea batatas/efeitos da radiação , Sistemas de Manutenção da Vida/instrumentação , Triticum/efeitos da radiação , Ambiente Controlado , Ipomoea batatas/crescimento & desenvolvimento , Luz , Iluminação/instrumentação , Fotoperíodo , Sementes , Solo , Voo Espacial , Temperatura , Triticum/crescimento & desenvolvimento
20.
Adv Space Res ; 35(9): 1552-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16175678

RESUMO

Laboratory Biosphere is a 40-m3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.g., hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in mmol h-1 m-2 of planted area. An 85-day crop of USU Apogee wheat under a 16-h lighted/8-h dark regime peaked in fixation rate at about 100 mmol h-1 m-2 approximately 24 days after planting. Light intensity was about 840 micromoles m-2 s-1. Dark respiration peaked at about 31 mmol h-1 m-2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h-1 m-2 was observed in the dark closed chamber for 100 days after the harvest. A 126-day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 micromoles m-2 s-1, 18-h lighted/6-h dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h-1 m-2 after 42 days and dark respiration settled into a range of 12-23 mmol h-1 m-2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO2 levels were allowed to range widely from a few hundred to about 3000 ppm, which permitted observation of fixation rates both at varying CO2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CELSS which integrate the simultaneous growth of several crops as in a sustainable remote life support system.


Assuntos
Dióxido de Carbono/metabolismo , Sistemas Ecológicos Fechados , Ipomoea batatas/metabolismo , Sistemas de Manutenção da Vida , Triticum/metabolismo , Biomassa , Dióxido de Carbono/análise , Respiração Celular , Escuridão , Ipomoea batatas/crescimento & desenvolvimento , Fotoperíodo , Fotossíntese , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA