Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Phys D Appl Phys ; 52(16): 163001, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33191949

RESUMO

Super-resolution microscopy (SRM) has become essential for the study of nanoscale biological processes. This type of imaging often requires the use of specialised image analysis tools to process a large volume of recorded data and extract quantitative information. In recent years, our team has built an open-source image analysis framework for SRM designed to combine high performance and ease of use. We named it NanoJ-a reference to the popular ImageJ software it was developed for. In this paper, we highlight the current capabilities of NanoJ for several essential processing steps: spatio-temporal alignment of raw data (NanoJ-Core), super-resolution image reconstruction (NanoJ-SRRF), image quality assessment (NanoJ-SQUIRREL), structural modelling (NanoJ-VirusMapper) and control of the sample environment (NanoJ-Fluidics). We expect to expand NanoJ in the future through the development of new tools designed to improve quantitative data analysis and measure the reliability of fluorescent microscopy studies.

2.
Methods ; 88: 109-21, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26079924

RESUMO

Single Molecule Localization Microscopy (SMLM) techniques such as Photo-Activation Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) enable fluorescence microscopy super-resolution: the overcoming of the resolution barrier imposed by the diffraction of light. These techniques are based on acquiring hundreds or thousands of images of single molecules, locating them and reconstructing a higher-resolution image from the high-precision localizations. These methods generally imply a considerable trade-off between imaging speed and resolution, limiting their applicability to high-throughput workflows. Recent advancements in scientific Complementary Metal-Oxide Semiconductor (sCMOS) camera sensors and localization algorithms reduce the temporal requirements for SMLM, pushing it toward high-throughput microscopy. Here we outline the decisions researchers face when considering how to adapt hardware on a new system for sCMOS sensors with high-throughput in mind.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Fotomicrografia/métodos , Algoritmos , Microscopia de Fluorescência/instrumentação , Imagem Molecular/instrumentação , Fotomicrografia/instrumentação
4.
Nat Commun ; 12(1): 2448, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907196

RESUMO

Despite the central role of division in bacterial physiology, how division proteins work together as a nanoscale machine to divide the cell remains poorly understood. Cell division by cell wall synthesis proteins is guided by the cytoskeleton protein FtsZ, which assembles at mid-cell as a dense Z-ring formed of treadmilling filaments. However, although FtsZ treadmilling is essential for cell division, the function of FtsZ treadmilling remains unclear. Here, we systematically resolve the function of FtsZ treadmilling across each stage of division in the Gram-positive model organism Bacillus subtilis using a combination of nanofabrication, advanced microscopy, and microfluidics to measure the division-protein dynamics in live cells with ultrahigh sensitivity. We find that FtsZ treadmilling has two essential functions: mediating condensation of diffuse FtsZ filaments into a dense Z-ring, and initiating constriction by guiding septal cell wall synthesis. After constriction initiation, FtsZ treadmilling has a dispensable function in accelerating septal constriction rate. Our results show that FtsZ treadmilling is critical for assembling and initiating the bacterial cell division machine.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Guanosina Trifosfato/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Divisão Celular , Parede Celular/ultraestrutura , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Expressão Gênica , Hidrólise , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Transporte Proteico
5.
Biomed Opt Express ; 11(7): 3927-3935, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014576

RESUMO

We demonstrate the first planar Airy light-sheet microscope. Fluorescence light-sheet microscopy has become the method of choice to study large biological samples with cellular or sub-cellular resolution. The propagation-invariant Airy beam enables a ten-fold increase in field-of-view with single-photon excitation; however, the characteristic asymmetry of the light-sheet limits its potential for multi-photon excitation. Here we show how a planar light-sheet can be formed from the curved propagation-invariant Airy beam. The resulting symmetric light sheet excites two-photon fluorescence uniformly across an extended field-of-view without the need for deconvolution. We demonstrate the method for rapid two-photon imaging of large volumes of neuronal tissue.

6.
Nat Commun ; 10(1): 1223, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874553

RESUMO

Combining and multiplexing microscopy approaches is crucial to understand cellular events, but requires elaborate workflows. Here, we present a robust, open-source approach for treating, labelling and imaging live or fixed cells in automated sequences. NanoJ-Fluidics is based on low-cost Lego hardware controlled by ImageJ-based software, making high-content, multimodal imaging easy to implement on any microscope with high reproducibility. We demonstrate its capacity on event-driven, super-resolved live-to-fixed and multiplexed STORM/DNA-PAINT experiments.

7.
Dev Cell ; 45(1): 132-145.e3, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29634933

RESUMO

Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells to the underlying substrate throughout mitosis, guide polarized cell migration following mitotic exit, and are functionally important, since adherent cells undergo division failure when removed from the substrate. Further, the ability of cells to re-spread along pre-existing adhesive contacts is essential for division in cells compromised in their ability to construct a RhoGEF-dependent (Ect2) actomyosin ring. As a result, following Ect2 depletion, cells fail to divide on small adhesive islands but successfully divide on larger patterns, as the connection between daughter cells narrows and severs as they migrate away from one another. In this way, regulated re-modeling of cell-substrate adhesions during mitotic rounding aids division in animal cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Mama/citologia , Adesão Celular/fisiologia , Mitose/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Epitélio Pigmentado da Retina/citologia , Fuso Acromático/metabolismo , Animais , Mama/metabolismo , Divisão Celular , Polaridade Celular , Células Cultivadas , Feminino , Células HeLa , Humanos , Integrinas/metabolismo , Epitélio Pigmentado da Retina/metabolismo
8.
Methods Cell Biol ; 125: 95-117, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25640426

RESUMO

Super-resolution (SR) methodologies permit the visualization of cellular structures at near-molecular scale (1-30 nm), enabling novel mechanistic analysis of key events in cell biology not resolvable by conventional fluorescence imaging (∼300-nm resolution). When this level of detail is combined with computing power and fast and reliable analysis software, high-content screenings using SR becomes a practical option to address multiple biological questions. The importance of combining these powerful analytical techniques cannot be ignored, as they can address phenotypic changes on the molecular scale and in a statistically robust manner. In this work, we suggest an easy-to-implement protocol that can be applied to set up a high-content 3D SR experiment with user-friendly and freely available software. The protocol can be divided into two main parts: chamber and sample preparation, where a protocol to set up a direct STORM (dSTORM) sample is presented; and a second part where a protocol for image acquisition and analysis is described. We intend to take the reader step-by-step through the experimental process highlighting possible experimental bottlenecks and possible improvements based on recent developments in the field.


Assuntos
Microscopia/métodos , Animais , Linhagem Celular , Cor , Humanos , Processamento de Imagem Assistida por Computador , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA