Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226462

RESUMO

Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10 percentage points higher in African populations. Three signals (SERPINA1, ZFP36L2, and TLR10) contain predicted deleterious missense variants. Two loci, SOCS3 and HPN, each harbor two conditionally distinct, non-coding variants. The gene region encoding the fibrinogen protein chain subunits (FGG;FGB;FGA), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common in African ancestry populations but extremely rare in Europeans (MAFAFR=0.180; MAFEUR=0.008). Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation.

2.
Hum Mol Genet ; 31(3): 347-361, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34553764

RESUMO

Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing (WGS) from NHLBI's Trans-Omics for Precision Medicine initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Plaquetas , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Polimorfismo de Nucleotídeo Único , Medicina de Precisão/métodos , Estados Unidos
3.
Am J Hum Genet ; 108(5): 874-893, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887194

RESUMO

Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/patologia , Estudo de Associação Genômica Ampla , National Heart, Lung, and Blood Institute (U.S.)/organização & administração , Fenótipo , Adulto , Idoso , Cromossomos Humanos Par 16/genética , Conjuntos de Dados como Assunto , Feminino , Edição de Genes , Variação Genética/genética , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Controle de Qualidade , Reprodutibilidade dos Testes , Estados Unidos
4.
Am J Hum Genet ; 108(10): 1836-1851, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34582791

RESUMO

Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.


Assuntos
Asma/epidemiologia , Biomarcadores/metabolismo , Dermatite Atópica/epidemiologia , Leucócitos/patologia , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Locos de Características Quantitativas , Asma/genética , Asma/metabolismo , Asma/patologia , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Prognóstico , Proteoma/análise , Proteoma/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
5.
Mol Psychiatry ; 28(4): 1480-1493, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737482

RESUMO

Copy number variants (CNVs) are deletions and duplications of DNA sequence. The most frequently studied CNVs, which are described in this review, are recurrent CNVs that occur in the same locations on the genome. These CNVs have been strongly implicated in neurodevelopmental disorders, namely autism spectrum disorder (ASD), intellectual disability (ID), and developmental delay (DD), but also in schizophrenia. More recent work has also shown that CNVs increase risk for other psychiatric disorders, namely, depression, bipolar disorder, and post-traumatic stress disorder. Many of the same CNVs are implicated across all of these disorders, and these neuropsychiatric CNVs are also associated with cognitive ability in the general population, as well as with structural and functional brain alterations. Neuropsychiatric CNVs also show incomplete penetrance, such that carriers do not always develop any psychiatric disorder, and may show only mild symptoms, if any. Variable expressivity, whereby the same CNVs are associated with many different phenotypes of varied severity, also points to highly complex mechanisms underlying disease risk in CNV carriers. Comprehensive and longitudinal phenotyping studies of individual CNVs have provided initial insights into these mechanisms. However, more work is needed to estimate and predict the effect of non-recurrent, ultra-rare CNVs, which also contribute to psychiatric and cognitive outcomes. Moreover, delineating the broader phenotypic landscape of neuropsychiatric CNVs in both clinical and general population cohorts may also offer important mechanistic insights.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Esquizofrenia , Humanos , Variações do Número de Cópias de DNA/genética , Transtorno do Espectro Autista/genética , Esquizofrenia/genética , Deficiência Intelectual/genética , Cognição
6.
Brain ; 146(4): 1686-1696, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36059063

RESUMO

Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic architecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hypothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead to similar overlaps at the macroscale brain level such as large-scale brain functional networks. We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of pleiotropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state functional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric conditions. Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic (rTranscriptomic) correlations with moderate to high concordance: rGenetic-rFunctional connectivity = 0.71 [0.40-0.87] and rTranscriptomic-rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles associated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were mainly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate general mechanisms-amenable to intervention-across psychiatric conditions and genetic risks.


Assuntos
Conectoma , Transtornos Mentais , Humanos , Pleiotropia Genética , Imageamento por Ressonância Magnética , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Encéfalo/diagnóstico por imagem
7.
Mol Psychiatry ; 27(3): 1373-1383, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091668

RESUMO

Schizophrenia is a severe, complex mental disorder characterized by a combination of positive symptoms, negative symptoms, and impaired cognitive function. Schizophrenia is highly heritable (~80%) with multifactorial etiology and complex polygenic genetic architecture. Despite the large number of genetic variants associated with schizophrenia, few causal variants have been established. Gaining insight into the mechanistic influences of these genetic variants may facilitate our ability to apply these findings to prevention and treatment. Though there have been more than 300 studies of gene expression in schizophrenia over the past 15 years, none of the studies have yielded consistent evidence for specific genes that contribute to schizophrenia risk. The aim of this work is to conduct a systematic review and synthesis of case-control studies of genome-wide gene expression in schizophrenia. Comprehensive literature searches were completed in PubMed, EmBase, and Web of Science, and after a systematic review of the studies, data were extracted from those that met the following inclusion criteria: human case-control studies comparing the genome-wide transcriptome of individuals diagnosed with schizophrenia to healthy controls published between January 1, 2000 and June 30, 2020 in the English language. Genes differentially expressed in cases were extracted from these studies, and overlapping genes were compared to previous research findings from the genome-wide association, structural variation, and tissue-expression studies. The transcriptome-wide analysis identified different genes than those previously reported in genome-wide association, exome sequencing, and structural variation studies of schizophrenia. Only one gene, GBP2, was replicated in five studies. Previous work has shown that this gene may play a role in immune function in the etiology of schizophrenia, which in turn could have implications for risk profiling, prevention, and treatment. This review highlights the methodological inconsistencies that impede valid meta-analyses and synthesis across studies. Standardization of the use of covariates, gene nomenclature, and methods for reporting results could enhance our understanding of the potential mechanisms through which genes exert their influence on the etiology of schizophrenia. Although these results are promising, collaborative efforts with harmonization of methodology will facilitate the identification of the role of genes underlying schizophrenia.


Assuntos
Esquizofrenia , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial , Esquizofrenia/genética , Sequenciamento do Exoma
8.
Proc Natl Acad Sci U S A ; 117(13): 7430-7436, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170019

RESUMO

Recent progress in deciphering mechanisms of human brain cortical folding leave unexplained whether spatially patterned genetic influences contribute to this folding. High-resolution in vivo brain MRI can be used to estimate genetic correlations (covariability due to shared genetic factors) in interregional cortical thickness, and biomechanical studies predict an influence of cortical thickness on folding patterns. However, progress has been hampered because shared genetic influences related to folding patterns likely operate at a scale that is much more local (<1 cm) than that addressed in prior imaging studies. Here, we develop methodological approaches to examine local genetic influences on cortical thickness and apply these methods to two large, independent samples. We find that such influences are markedly heterogeneous in strength, and in some cortical areas are notably stronger in specific orientations relative to gyri or sulci. The overall, phenotypic local correlation has a significant basis in shared genetic factors and is highly symmetric between left and right cortical hemispheres. Furthermore, the degree of local cortical folding relates systematically with the strength of local correlations, which tends to be higher in gyral crests and lower in sulcal fundi. The relationship between folding and local correlations is stronger in primary sensorimotor areas and weaker in association areas such as prefrontal cortex, consistent with reduced genetic constraints on the structural topology of association cortex. Collectively, our results suggest that patterned genetic influences on cortical thickness, measurable at the scale of in vivo MRI, may be a causal factor in the development of cortical folding.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Pré-Frontal/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Bases de Dados Factuais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/anatomia & histologia
9.
Mol Psychiatry ; 26(2): 656-665, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-30644433

RESUMO

Successful cognitive development between childhood and adulthood has important consequences for future mental and physical wellbeing, as well as occupational and financial success. Therefore, delineating the genetic influences underlying changes in cognitive abilities during this developmental period will provide important insights into the biological mechanisms that govern both typical and atypical maturation. Using data from the Philadelphia Neurodevelopmental Cohort (PNC), a large population-based sample of individuals aged 8 to 21 years old (n = 6634), we used an empirical relatedness matrix to establish the heritability of general and specific cognitive functions and determine if genetic factors influence cognitive maturation (i.e., Gene × Age interactions) between childhood and early adulthood. We found that neurocognitive measures across childhood and early adulthood were significantly heritable. Moreover, genetic variance on general cognitive ability, or g, increased significantly between childhood and early adulthood. Finally, we did not find evidence for decay in genetic correlation on neurocognition throughout childhood and adulthood, suggesting that the same genetic factors underlie cognition at different ages throughout this developmental period. Establishing significant Gene × Age interactions in neurocognitive functions across childhood and early adulthood is a necessary first step in identifying genes that influence cognitive development, rather than genes that influence cognition per se. Moreover, since aberrant cognitive development confers risk for several psychiatric disorders, further examination of these Gene × Age interactions may provide important insights into their etiology.


Assuntos
Cognição , Transtornos Mentais , Adolescente , Adulto , Criança , Estudos de Coortes , Humanos , Adulto Jovem
10.
Mol Psychiatry ; 26(6): 2663-2676, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33414497

RESUMO

Genomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Cognição , Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Humanos , Testes de Inteligência
11.
Cereb Cortex ; 30(9): 4899-4913, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32318716

RESUMO

Identifying genetic factors underlying neuroanatomical variation has been difficult. Traditional methods have used brain regions from predetermined parcellation schemes as phenotypes for genetic analyses, although these parcellations often do not reflect brain function and/or do not account for covariance between regions. We proposed that network-based phenotypes derived via source-based morphometry (SBM) may provide additional insight into the genetic architecture of neuroanatomy given its data-driven approach and consideration of covariance between voxels. We found that anatomical SBM networks constructed on ~ 20 000 individuals from the UK Biobank were heritable and shared functionally meaningful genetic overlap with each other. We additionally identified 27 unique genetic loci that contributed to one or more SBM networks. Both GWA and genetic correlation results indicated complex patterns of pleiotropy and polygenicity similar to other complex traits. Lastly, we found genetic overlap between a network related to the default mode and schizophrenia, a disorder commonly associated with neuroanatomic alterations.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Estudos de Associação Genética , Rede Nervosa/fisiopatologia , Adulto , Idoso , Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Análise de Componente Principal , Esquizofrenia/genética , Esquizofrenia/fisiopatologia
12.
Cereb Cortex ; 30(6): 3439-3450, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32037459

RESUMO

Previous studies suggest that gyrification is associated with superior cognitive abilities in humans, but the strength of this relationship remains unclear. Here, in two samples of related individuals (total N = 2882), we calculated an index of local gyrification (LGI) at thousands of cortical surface points using structural brain images and an index of general cognitive ability (g) using performance on cognitive tests. Replicating previous studies, we found that phenotypic and genetic LGI-g correlations were positive and statistically significant in many cortical regions. However, all LGI-g correlations in both samples were extremely weak, regardless of whether they were significant or nonsignificant. For example, the median phenotypic LGI-g correlation was 0.05 in one sample and 0.10 in the other. These correlations were even weaker after adjusting for confounding neuroanatomical variables (intracranial volume and local cortical surface area). Furthermore, when all LGIs were considered together, at least 89% of the phenotypic variance of g remained unaccounted for. We conclude that the association between LGI and g is too weak to have profound implications for our understanding of the neurobiology of intelligence. This study highlights potential issues when focusing heavily on statistical significance rather than effect sizes in large-scale observational neuroimaging studies.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Cognição/fisiologia , Inteligência/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/anatomia & histologia , Feminino , Humanos , Inteligência/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
13.
Dev Psychobiol ; 63(5): 997-1005, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33719106

RESUMO

Temperament is an individual's nature and is widely believed to have a heritable foundation. Few studies, however, have evaluated paternal and maternal contributions to the triadic dimensions of temperament. Rhesus monkeys are widely utilized to model genetic contributions to human development due to their close genetic-relatedness and common temperament structure, providing a powerful translational model for investigating paternal and maternal genetic influences on temperament. The temperament of rhesus monkey infants born to 19 different sires and 50 different dams was assessed during the first month of life by comparing the temperament of paternal or maternal half-siblings reared with their mothers in species-normative conditions or reared in a neonatal nursery. Factor scores from three dimensions of temperament were obtained (Orienting/Regulation, Negative Affectivity, and Surgency/Extraversion) and ANOVAs were used to assess genetic effects. For paternal half-siblings, results showed a statistically significant paternal contribution to Orienting/Regulation, Negative Affectivity, and Surgency/Extraversion factor scores. For maternal half-siblings, results showed a statistically significant contribution to Orienting/Regulation factor scores. When parsed by early rearing condition, results showed a paternal contribution Orienting/Regulation, Negative Affectivity, and Surgency/Extraversion scores for paternal half-siblings reared in the neonatal nursery, while there was only a paternal contribution to Surgency/Extraversion for paternal half-siblings reared by their mothers. There was only a maternal contribution to Orienting/Regulation for maternal half-siblings reared by their mothers. These results show that paternal and maternal contributions to temperament vary by environmental context, and that mothers may environmentally buffer their infants from paternal contributions to their temperament.


Assuntos
Extroversão Psicológica , Temperamento , Animais , Pai , Feminino , Humanos , Macaca mulatta , Masculino , Mães , Temperamento/fisiologia
14.
Am J Med Genet B Neuropsychiatr Genet ; 186(3): 151-161, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32652861

RESUMO

African Americans (AA) have lower prevalence of alcohol dependence and higher subjective response to alcohol than European Americans. Genome-wide association studies (GWAS) have identified genes/variants associated with alcohol dependence specifically in AA; however, the sample sizes are still not large enough to detect variants with small effects. Admixture mapping is an alternative way to identify alcohol dependence genes/variants that may be unique to AA. In this study, we performed the first admixture mapping of DSM-IV alcohol dependence diagnosis, DSM-IV alcohol dependence criterion count, and two scores from the self-rating of effects of ethanol (SRE) as measures of response to alcohol: the first five times of using alcohol (SRE-5) and average of SRE across three times (SRE-T). Findings revealed a region on chromosome 4 that was genome-wide significant for SRE-5 (p value = 4.18E-05). Fine mapping did not identify a single causal variant to be associated with SRE-5; instead, conditional analysis concluded that multiple variants collectively explained the admixture mapping signal. PPARGC1A, a gene that has been linked to alcohol consumption in previous studies, is located in this region. Our finding suggests that admixture mapping is a useful tool to identify genes/variants that may have been missed by current GWAS approaches in admixed populations.


Assuntos
Alcoolismo/genética , Negro ou Afro-Americano/genética , Etanol/farmacologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Autorrelato , Alcoolismo/etiologia , Alcoolismo/fisiopatologia , Estudos de Casos e Controles , Manual Diagnóstico e Estatístico de Transtornos Mentais , Humanos , Estudos Retrospectivos , População Branca
15.
Diabetologia ; 63(5): 977-986, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32016567

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is associated with cognitive impairments, but it is unclear whether common genetic factors influence both type 2 diabetes risk and cognition. METHODS: Using data from 1892 Mexican-American individuals from extended pedigrees, including 402 with type 2 diabetes, we examined possible pleiotropy between type 2 diabetes and cognitive functioning, as measured by a comprehensive neuropsychological test battery. RESULTS: Negative phenotypic correlations (ρp) were observed between type 2 diabetes and measures of attention (Continuous Performance Test [CPT d']: ρp = -0.143, p = 0.001), verbal memory (California Verbal Learning Test [CVLT] recall: ρp = -0.111, p = 0.004) and face memory (Penn Face Memory Test [PFMT]: ρp = -0.127, p = 0.002; PFMT Delayed: ρp = -0.148, p = 2 × 10-4), replicating findings of cognitive impairment in type 2 diabetes. Negative genetic correlations (ρg) were also observed between type 2 diabetes and measures of attention (CPT d': ρg = -0.401, p = 0.001), working memory (digit span backward test: ρg = -0.380, p = 0.005), and face memory (PFMT: ρg = -0.476, p = 2 × 10-4; PFMT Delayed: ρg = -0.376, p = 0.005), suggesting that the same genetic factors underlying risk for type 2 diabetes also influence poor cognitive performance in these domains. Performance in these domains was also associated with type 2 diabetes risk using an endophenotype ranking value approach. Specifically, on measures of attention (CPT d': ß = -0.219, p = 0.005), working memory (digit span backward: ß = -0.326, p = 0.035), and face memory (PFMT: ß = -0.171, p = 0.023; PFMT Delayed: ß = -0.215, p = 0.005), individuals with type 2 diabetes showed the lowest performance, while unaffected/unrelated individuals showed the highest performance, and those related to an individual with type 2 diabetes performed at an intermediate level. CONCLUSIONS/INTERPRETATION: These findings suggest that cognitive impairment may be a useful endophenotype of type 2 diabetes and, therefore, help to elucidate the pathophysiological underpinnings of this chronic disease. DATA AVAILABILITY: The data analysed in this study is available in dbGaP: www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001215.v2.p2.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Adulto , Cognição/fisiologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
16.
Mol Psychiatry ; 24(4): 523-535, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29955165

RESUMO

As it is likely that both common and rare genetic variation are important for complex disease risk, studies that examine the full range of the allelic frequency distribution should be utilized to dissect the genetic influences on mental illness. The rate limiting factor for inferring an association between a variant and a phenotype is inevitably the total number of copies of the minor allele captured in the studied sample. For rare variation, with minor allele frequencies of 0.5% or less, very large samples of unrelated individuals are necessary to unambiguously associate a locus with an illness. Unfortunately, such large samples are often cost prohibitive. However, by using alternative analytic strategies and studying related individuals, particularly those from large multiplex families, it is possible to reduce the required sample size while maintaining statistical power. We contend that using whole genome sequence (WGS) in extended pedigrees provides a cost-effective strategy for psychiatric gene mapping that complements common variant approaches and WGS in unrelated individuals. This was our impetus for forming the "Pedigree-Based Whole Genome Sequencing of Affective and Psychotic Disorders" consortium. In this review, we provide a rationale for the use of WGS with pedigrees in modern psychiatric genetics research. We begin with a focused review of the current literature, followed by a short history of family-based research in psychiatry. Next, we describe several advantages of pedigrees for WGS research, including power estimates, methods for studying the environment, and endophenotypes. We conclude with a brief description of our consortium and its goals.


Assuntos
Família/psicologia , Transtornos Mentais/genética , Alelos , Frequência do Gene/genética , Variação Genética/genética , Genótipo , Humanos , Saúde Mental , Linhagem , Fenótipo , Projetos de Pesquisa , Tamanho da Amostra , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
17.
Proc Natl Acad Sci U S A ; 119(15): e2200472119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35344402

Assuntos
Big Data , Dinamarca
18.
Am J Med Genet B Neuropsychiatr Genet ; 183(7): 403-411, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32812349

RESUMO

Schizophrenia has substantial variation in symptom severity, course of illness, and overall functioning. Earlier age of onset (AOO) is consistently associated with negative outcomes and yet the causes of this association are still unknown. We used a multiplex, extended pedigree design (total N = 771; 636 relatives from 43 multigenerational families with at least 2 relatives diagnosed with schizophrenia and 135 matched controls) to examine among the schizophrenia relatives (N = 103) the relationship between AOO and negative and positive symptom severity, cognition, and community functioning. Most importantly, we assessed whether there are shared genetic effects between AOO and negative symptoms, positive symptoms, cognition, and community functioning. As expected, earlier AOO was significantly correlated with increased severity of negative and positive symptoms and poorer cognition and community functioning among schizophrenia patients. Notably, the genetic correlation between AOO of schizophrenia and negative symptoms was significant (Rg = -1.00, p = .007). Although the genetic correlations between AOO and positive symptoms, cognition, and community functioning were estimated at maximum and in the predicted direction, they were not statistically significant. AOO of schizophrenia itself was modestly heritable, although not significant and negative symptoms, positive symptoms, and cognition were all strongly and significantly heritable. In sum, we replicated prior findings indicating that earlier AOO is associated with increased symptom severity and extended the literature by detecting shared genetic effects between AOO and negative symptoms, suggestive of pleiotropy.


Assuntos
Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Adulto , Fatores Etários , Idade de Início , Família/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Linhagem , Escalas de Graduação Psiquiátrica , Psicologia do Esquizofrênico , Índice de Gravidade de Doença
19.
J Lipid Res ; 60(9): 1630-1639, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227640

RESUMO

The de novo ceramide synthesis pathway is essential to human biology and health, but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry-specific rare functional variant, L175Q, in delta 4-desaturase, sphingolipid 1 (DEGS1), a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders and spur ongoing research of drug targets along this pathway.


Assuntos
Ceramidas/biossíntese , Ácidos Graxos Dessaturases/genética , Western Blotting , Sistemas CRISPR-Cas/genética , Ceramidas/metabolismo , Feminino , Genótipo , Células Hep G2 , Humanos , Masculino , Americanos Mexicanos
20.
Genet Epidemiol ; 42(4): 378-393, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29460292

RESUMO

Knowledge on genetic and environmental (G × E) interaction effects on cardiometabolic risk factors (CMRFs) in children is limited.  The purpose of this study was to examine the impact of G × E interaction effects on CMRFs in Mexican American (MA) children (n = 617, ages 6-17 years). The environments examined were sedentary activity (SA), assessed by recalls from "yesterday" (SAy) and "usually" (SAu) and physical fitness (PF) assessed by Harvard PF scores (HPFS). CMRF data included body mass index (BMI), waist circumference (WC), fat mass (FM), fasting insulin (FI), homeostasis model of assessment-insulin resistance (HOMA-IR), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), systolic (SBP) and diastolic (DBP) blood pressure, and number of metabolic syndrome components (MSC). We examined potential G × E interaction in the phenotypic expression of CMRFs using variance component models and likelihood-based statistical inference. Significant G × SA interactions were identified for six CMRFs: BMI, WC, FI, HOMA-IR, MSC, and HDL, and significant G × HPFS interactions were observed for four CMRFs: BMI, WC, FM, and HOMA-IR. However, after correcting for multiple hypothesis testing, only WC × SAy, FM × SAy, and FI × SAu interactions became marginally significant. After correcting for multiple testing, most of CMRFs exhibited significant G × E interactions (Reduced G × E model vs. Constrained model). These findings provide evidence that genetic factors interact with SA and PF to influence variation in CMRFs, and underscore the need for better understanding of these relationships to develop strategies and interventions to effectively reduce or prevent cardiometabolic risk in children.


Assuntos
Doenças Cardiovasculares/genética , Interação Gene-Ambiente , Síndrome Metabólica/genética , Americanos Mexicanos/genética , Aptidão Física , Comportamento Sedentário , Adolescente , Glicemia/metabolismo , Índice de Massa Corporal , Criança , Feminino , Variação Genética , Humanos , Funções Verossimilhança , Masculino , Modelos Genéticos , Herança Multifatorial/genética , Fatores de Risco , Circunferência da Cintura/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA