Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
N Engl J Med ; 384(5): 428-439, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33471991

RESUMO

BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking. METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity. RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants. CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Variação Genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Razão de Chances , Risco , Análise de Sequência de DNA , Adulto Jovem
2.
Am J Hum Genet ; 99(4): 903-911, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27640304

RESUMO

Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER- = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10-12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cromossomos Humanos Par 5/genética , Fator 10 de Crescimento de Fibroblastos/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Estrogênio/metabolismo , Alelos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Haplótipos/genética , Humanos , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
3.
Hum Mol Genet ; 23(22): 6096-111, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24943594

RESUMO

Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteínas de Ancoragem à Quinase A/genética , Adulto , Alelos , Ataxina-7 , Estudos de Casos e Controles , Proteínas do Citoesqueleto/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Quinases Relacionadas a NIMA , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética
4.
Hum Mol Genet ; 23(7): 1934-46, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24242184

RESUMO

Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70,917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46,450 breast cancer cases and 42,461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10(-8). Results from the second analytic approach were consistent with those from the first (P > 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Epistasia Genética/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Modelos Logísticos , Polimorfismo de Nucleotídeo Único
5.
Am J Hum Genet ; 92(4): 489-503, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23540573

RESUMO

Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1.


Assuntos
Neoplasias da Mama/genética , Cromossomos Humanos Par 11/genética , Ciclina D1/genética , Elementos Facilitadores Genéticos/genética , Polimorfismo de Nucleotídeo Único/genética , Sítios de Ligação , Estudos de Casos e Controles , Linhagem Celular Tumoral , Cromatina/química , Cromatina/genética , Imunoprecipitação da Cromatina , Ciclina D1/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Fator de Transcrição GATA3/antagonistas & inibidores , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Luciferases/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Elementos Silenciadores Transcricionais/genética , Proteínas Elk-4 do Domínio ets/antagonistas & inibidores , Proteínas Elk-4 do Domínio ets/genética , Proteínas Elk-4 do Domínio ets/metabolismo
6.
Nat Genet ; 55(9): 1435-1439, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592023

RESUMO

Linkage and candidate gene studies have identified several breast cancer susceptibility genes, but the overall contribution of coding variation to breast cancer is unclear. To evaluate the role of rare coding variants more comprehensively, we performed a meta-analysis across three large whole-exome sequencing datasets, containing 26,368 female cases and 217,673 female controls. Burden tests were performed for protein-truncating and rare missense variants in 15,616 and 18,601 genes, respectively. Associations between protein-truncating variants and breast cancer were identified for the following six genes at exome-wide significance (P < 2.5 × 10-6): the five known susceptibility genes ATM, BRCA1, BRCA2, CHEK2 and PALB2, together with MAP3K1. Associations were also observed for LZTR1, ATR and BARD1 with P < 1 × 10-4. Associations between predicted deleterious rare missense or protein-truncating variants and breast cancer were additionally identified for CDKN2A at exome-wide significance. The overall contribution of coding variants in genes beyond the previously known genes is estimated to be small.


Assuntos
Exoma , Neoplasias , Feminino , Humanos , Sequenciamento do Exoma , Exoma/genética , Mutação de Sentido Incorreto/genética
7.
Pharmaceutics ; 13(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834357

RESUMO

Anthracyclines are among the most used chemotherapeutic agents in breast cancer (BC). However their use is hampered by anthracycline-induced cardiotoxicity (AIC). The currently known clinical and genetic risk factors do not fully explain the observed inter-individual variability and only have a limited ability to predict which patients are more likely to develop this severe toxicity. To identify novel predictive genes, we conducted a two-stage genome-wide association study in epirubicin-treated BC patients. In the discovery phase, we genotyped over 700,000 single nucleotide variants in a cohort of 227 patients. The most interesting finding was rs62134260, located 4kb upstream of POLRMT (OR = 5.76, P = 2.23 × 10-5). We replicated this association in a validation cohort of 123 patients (P = 0.021). This variant regulates the expression of POLRMT, a gene that encodes a mitochondrial DNA-directed RNA polymerase, responsible for mitochondrial gene expression. Individuals harbouring the risk allele had a decreased expression of POLRMT in heart tissue that may cause an impaired capacity to maintain a healthy mitochondrial population in cardiomyocytes under stressful conditions, as is treatment with epirubicin. This finding suggests a novel molecular mechanism involved in the development of AIC and may improve our ability to predict patients who are at risk.

8.
Nat Genet ; 52(1): 56-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911677

RESUMO

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Mapeamento Cromossômico/métodos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Teorema de Bayes , Feminino , Humanos , Desequilíbrio de Ligação , Sequências Reguladoras de Ácido Nucleico , Fatores de Risco
10.
Sci Rep ; 6: 32512, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27600471

RESUMO

Genome-wide association studies have found SNPs at 17q22 to be associated with breast cancer risk. To identify potential causal variants related to breast cancer risk, we performed a high resolution fine-mapping analysis that involved genotyping 517 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of genotypes for 3,134 SNPs in more than 89,000 participants of European ancestry from the Breast Cancer Association Consortium (BCAC). We identified 28 highly correlated common variants, in a 53 Kb region spanning two introns of the STXBP4 gene, that are strong candidates for driving breast cancer risk (lead SNP rs2787486 (OR = 0.92; CI 0.90-0.94; P = 8.96 × 10(-15))) and are correlated with two previously reported risk-associated variants at this locus, SNPs rs6504950 (OR = 0.94, P = 2.04 × 10(-09), r(2) = 0.73 with lead SNP) and rs1156287 (OR = 0.93, P = 3.41 × 10(-11), r(2) = 0.83 with lead SNP). Analyses indicate only one causal SNP in the region and several enhancer elements targeting STXBP4 are located within the 53 kb association signal. Expression studies in breast tumor tissues found SNP rs2787486 to be associated with increased STXBP4 expression, suggesting this may be a target gene of this locus.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Proteínas de Transporte Vesicular/genética , Neoplasias da Mama/patologia , Mapeamento Cromossômico , Cromossomos Humanos Par 17/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA