Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 148(22): 5714-5723, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37840341

RESUMO

There is a need for flexible chemical sensors for the ecological and physiological research of avian species such as house sparrows (Passer domesticus). Current methods in this field are invasive and require multiple physical interactions with the birds. Emerging research in flexible bioelectronics can enable realization of implantable devices that are mechanically compliant with the underlying tissues for continuous real-time sensing in situ. However, challenges still remain in forming an intimate flexible interface. One of the promising flexible bioelectronic platforms for tissue-embedded sensing is based on functionalizing surgical sutures or threads. Threads have three-dimensional flexibility, high surface-area-to-volume ratio, inherent wicking properties, and are easily functionalizable using reel-to-reel dip coating. Threads are ideal as they are lightweight, therefore, would not interfere with flight motion and would only require minimal interaction with the bird. However, the challenge remains in achieving a highly conductive yet flexible electrode for electrochemical sensing using materials such as gold. In this study, we address this issue through novel gold deposition directly on thread substrate followed by enzyme immobilization to realize flexible electrochemical glucose biosensors on medical-grade sutures. These sensors were calibrated and tested in a range that is wide enough to include the expected range of glucose concentration in house sparrows (0-8.55 mM). Glucose monitoring in house sparrows will provide insights into energy metabolism and regulation during stress responses. In addition, the stability, repeatability, and selectivity of the sensor were tested with final validation in a real bird. Our innovative gold-coated, thread-based flexible electrochemical glucose sensor can also be used in other small and large animals. This can also be extended to monitoring other metabolites in future.


Assuntos
Glicemia , Pardais , Animais , Automonitorização da Glicemia , Glucose , Ouro/química , Suturas
2.
J Phys Chem B ; 128(13): 3273-3281, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38532249

RESUMO

Zwitterionic (ZI) polymers enable the formation of noncovalent cross-links within ionic liquid electrolytes (ILEs) to create nonflammable, mechanically robust, and highly conductive ionogel electrolytes. In this study, ZI homopolymer poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] scaffolds are synthesized in situ within lithium and/or sodium salt-based ILEs to construct a series of ionogels that contain between 3 and 15 wt % poly(MPC). Room-temperature ionic conductivity values of these ionogels are found to vary between approximately 1.3 and 2.2 mS cm-1. For sodium only and 1:1 lithium/sodium equimolar mixed salt ionogels containing 6 wt % poly(MPC), the ionic conductivity is found to improve by 14% compared to the neat ILE due to the presence of the ZI scaffold. Moreover, comparing the elastic modulus values of lithium- versus sodium-containing ionogels revealed a difference of up to 1 order of magnitude [10.6 vs 111 kPa, respectively, for 3 wt % poly(MPC)]. Molecular dynamics simulations of ionogel precursor solutions corroborate the experimental results by demonstrating differences in the lithium/ZI monomer and sodium/ZI monomer cluster size distributions formed, which is hypothesized to influence the scaffold network cross-link density obtained upon photopolymerization. This work provides insights into why ZI polymer-supported ionogel properties that are relevant for the development of safer electrolytes for lithium-ion and sodium-ion batteries depend upon the chemical identity of the alkali metal cation.

3.
Chempluschem ; 89(5): e202300731, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252804

RESUMO

Zwitterions (ZIs), which are molecules bearing an equal number of positive and negative charges and typically possessing large dipole moments, can play an important role in improving the characteristics of a wide variety of novel battery electrolytes. Significant Coulombic interactions among ZI charged groups and any mobile ions present can lead to several beneficial phenomena within electrolytes, such as increased salt dissociation, the formation of ordered pathways for ion transport, and enhanced mechanical robustness. In some cases, ZI additives can also boost electrochemical stability at the electrolyte/electrode interface and enable longer battery cycling. Here, a brief summary of selected key historical and recent advances in the use of ZI materials to enrich the performance of three distinct classes of battery electrolytes is presented. These include: ionic liquid-based, conventional solvent-based, and solid matrix-based (non-ceramic) electrolytes. Exploring a greater chemical diversity of ZI types and electrolyte pairings will likely lead to more discoveries that can empower next-generation battery designs in the years to come.

4.
Macromol Biosci ; 24(3): e2300365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37840462

RESUMO

Transdermal drug delivery offers a promising alternative to traditional methods such as oral ingestion and hypodermic injection. Hypodermic injections are painful, while oral ingestion requires higher doses due to enzymatic degradation and poor absorption. While microneedles address the pain issue, they are limited to delivering small amounts of drugs and can be impractical due to peeling off with motion and sweat. Herein, this work proposes soft injectables using drug-carrying sutures for painless and localized sustained delivery in the dermis. These sutures can remain in place during delivery and are suitable for all skin types. Surgical sutures can also serve as open capillary microfluidic channels carrying drug from a wearable drug reservoir to enable long-term (weeks to months) transdermal drug delivery. The experiments focus on delivering 5-fluorouracil (5-FU), a cancer drug, and rhodamine B, a drug model. A fixed-length suture of 60 cm delivers 0.43 mg of 5-flurouracil in 15 min. The experiments also demonstrate a continuous drug delivery of rhodamine B for over 8 weeks at a rate of 0.0195 mL h-1 . The results highlight that soft injectable sutures are promising candidates for long-term sustained delivery of varying quantities of drugs over weeks period compared to hypodermic injection, oral ingestion, or microneedles.


Assuntos
Sistemas de Liberação de Medicamentos , Suturas , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos
5.
Antibiotics (Basel) ; 9(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096893

RESUMO

Bacterial antibiotic resistance has been deemed one of the largest modern threats to human health. One of the root causes of antibiotic resistance is the inability of traditional wastewater management techniques, such as filtration and disinfection, to completely eliminate residual antibiotics from domestic and industrial effluents. In this study, we examine the ability of UiO-66; a metal-organic framework (MOF); in removing the antibiotic Doxycycline from aqueous environments. This study's findings suggest that UiO-66 was able to remove nearly 90% of the initial Doxycycline concentration. To correlate the isothermal data, Langmuir and Freundlich models were used. It was determined that the Langmuir model was best suited. Pseudo-first and -second order models were examined for kinetic data, where the pseudo-second order model was best suited-consistent with the maximum theoretical adsorption capacity found by the Langumir model. Thermodynamic analysis was also examined by studying UiO-66 adsorption under different temperatures. Mechanisms of adsorption were also analyzed through measuring adsorption at varying pH levels, thermogravimetric analysis (TGA), Infrared spectroscopy (IR) and Brunauer-Emmet-Teller (BET). This study also explores the possibility of recycling MOFs through exposure to gamma radiation, heat, and heating under low pressure, in order for UiO-66 to be used in multiple, consecutive cycles of Doxycycline removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA