Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1977): 20220774, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765834

RESUMO

Shark-cetacean trophic interactions, preserved as bite marks in the fossil record, mostly correspond to isolated or fragmentary findings that bear limited information about major trophic patterns or roles. Here, we provide evidence of focalized foraging by sharks in the form of tooth bite marks over physeteroids fossil bones from the late Miocene of Peru. These findings indicate that sharks were targeting the forehead of coeval physeteroids to actively feed on their lipid-rich nasal complexes. Miocene physeteroids displayed a broad diversity, including giant predatorial forms, small benthic foragers and suction feeders. Like their extant relatives, these animals exhibited enlarged fatty forehead organs responsible for their sound production capabilities, thus evolving taxon-specific cranial architecture. Bite marks are found on the cranial bones where these structures were attached, indicating that sharks actively targeted this region; but also, in areas that would only be accessible following the consumption of the surrounding soft tissues. The shape of the bite marks and their distribution suggests a series of consecutive scavenging events by individuals of different shark species. Similar bite patterns can be recognized on other Miocene physeteroids fossils from across the globe, suggesting that sharks actively exploited physeteroid carcasses as fat sources.


Assuntos
Tubarões , Cachalote , Animais , Fósseis , Peru , Crânio
2.
J Hum Evol ; 97: 159-75, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27457552

RESUMO

Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have resulted in the discovery of a late Oligocene (ca. 26.5 Ma; Chambira Formation) fossil primate-bearing locality (CTA-61). In this paper, we analyze the primate material consisting of two isolated upper molars, the peculiar morphology of which allows us to describe a new medium-sized platyrrhine monkey: Canaanimico amazonensis gen. et sp. nov. In addition to the recent discovery of Perupithecus ucayaliensis, a primitive anthropoid taxon of African affinities from the alleged latest Eocene Santa Rosa locality (Peruvian Amazonia), the discovery of Canaanimico adds to the evidence that primates were well-established in the Amazonian Basin during the Paleogene. Our phylogenetic results based on dental evidence show that none of the early Miocene Patagonian taxa (Homunculus, Carlocebus, Soriacebus, Mazzonicebus, Dolichocebus, Tremacebus, and Chilecebus), the late Oligocene Bolivian Branisella, or the Peruvian Canaanimico, is nested within a crown platyrrhine clade. All these early taxa are closely related and considered here as stem Platyrrhini. Canaanimico is nested within the Patagonian Soriacebinae, and closely related to Soriacebus, thereby extending back the soriacebine lineage to 26.5 Ma. Given the limited dental evidence, it is difficult to assess if Canaanimico was engaged in a form of pitheciine-like seed predation as is observed in Soriacebus and Mazzonicebus, but dental microwear patterns recorded on one upper molar indicate that Canaanimico was possibly a fruit and hard-object eater. If Panamacebus, a recently discovered stem cebine from the early Miocene of Panama, indicates that the crown platyrrhine radiation was already well underway by the earliest Miocene, Canaanimico indicates in turn that the "homunculid" radiation (as a part of the stem radiation) was well underway by the late Oligocene. These new data suggest that the stem radiation likely occurred in the Neotropics during the Oligocene, and that several stem lineages independently reached Patagonia during the early Miocene. Finally, we are still faced with a "layered" pattern of platyrrhine evolution, but modified in terms of timing of cladogeneses. If the crown platyrrhine radiation occurred in the Neotropics around the Oligocene-Miocene transition (or at least during the earliest Miocene), it was apparently concomitant with the diversification of the latest stem forms in Patagonia.


Assuntos
Fósseis/anatomia & histologia , Filogenia , Platirrinos/anatomia & histologia , Platirrinos/classificação , Animais , Evolução Biológica , Dente Molar/anatomia & histologia , Peru
3.
Am J Phys Anthropol ; 161(3): 478-493, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27430626

RESUMO

OBJECTIVES: Undoubted fossil Cebidae have so far been primarily documented from the late middle Miocene of Colombia, the late Miocene of Brazilian Amazonia, the early Miocene of Peruvian Amazonia, and very recently from the earliest Miocene of Panama. The evolutionary history of cebids is far from being well-documented, with notably a complete blank in the record of callitrichine stem lineages until and after the late middle Miocene (Laventan SALMA). Further documenting their evolutionary history is therefore of primary importance. MATERIAL: Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have allowed for the discovery of an early late Miocene (ca. 11 Ma; Mayoan SALMA) fossil primate-bearing locality (CTA-43; Pebas Formation). In this study, we analyze the primate material, which consists of five isolated teeth documenting two distinct Cebidae: Cebus sp., a medium-sized capuchin (Cebinae), and Cebuella sp., a tiny marmoset (Callitrichinae). RESULTS: Although limited, this new fossil material of platyrrhines contributes to documenting the post-Laventan evolutionary history of cebids, and besides testifies to the earliest occurrences of the modern Cebuella and Cebus/Sapajus lineages in the Neotropics. Regarding the evolutionary history of callitrichine marmosets, the discovery of an 11 Ma-old fossil representative of the modern Cebuella pushes back by at least 6 Ma the age of the Mico/Cebuella divergence currently proposed by molecular biologists (i.e., ca. 4.5 Ma). This also extends back to > 11 Ma BP the divergence between Callithrix and the common ancestor (CA) of Mico/Cebuella, as well as the divergence between the CA of marmosets and Callimico (Goeldi's callitrichine). DISCUSSION: This discovery from Peruvian Amazonia implies a deep evolutionary root of the Cebuella lineage in the northwestern part of South America (the modern western Amazon basin), slightly before the recession of the Pebas mega-wetland system (PMWS), ca. 10.5 Ma, and well-before the subsequent establishment of the Amazon drainage system (ca. 9-7 Ma). During the late middle/early late Miocene interval, the PMWS was seemingly not a limiting factor for dispersals and widespread distribution of terrestrial mammals, but it was also likely a source of diversification via a complex patchwork of submerged/emerged lands varying through time.


Assuntos
Callithrix/anatomia & histologia , Cebus/anatomia & histologia , Dente/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Fósseis , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA