Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691412

RESUMO

Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.


Gut microbiota plays an essential role in regulating the immune checkpoint therapyCarotenoids are promising molecules in the alteration of gut microbiotaCarotenoids activate the immune cells resulting in a low incidence of oxidative stress.

2.
Chem Soc Rev ; 51(14): 5805-5841, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35735186

RESUMO

The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.


Assuntos
COVID-19 , Nanoestruturas , Vírus , Animais , COVID-19/diagnóstico , Humanos , Dispositivos Lab-On-A-Chip , Pandemias
3.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005191

RESUMO

In this overview, the latest achievements in dietary origins, absorption mechanism, bioavailability assay, health advantages, cutting-edge encapsulation techniques, fortification approaches, and innovative highly sensitive sensor-based detection methods of vitamin B12 (VB12) were addressed. The cobalt-centered vitamin B is mainly found in animal products, posing challenges for strict vegetarians and vegans. Its bioavailability is highly influenced by intrinsic factor, absorption in the ileum, and liver reabsorption. VB12 mainly contributes to blood cell synthesis, cognitive function, and cardiovascular health, and potentially reduces anemia and optic neuropathy. Microencapsulation techniques improve the stability and controlled release of VB12. Co-microencapsulation of VB12 with other vitamins and bioactive compounds enhances bioavailability and controlled release, providing versatile initiatives for improving bio-functionality. Nanotechnology, including nanovesicles, nanoemulsions, and nanoparticles can enhance the delivery, stability, and bioavailability of VB12 in diverse applications, ranging from antimicrobial agents to skincare and oral insulin delivery. Staple food fortification with encapsulated and free VB12 emerges as a prominent strategy to combat deficiency and promote nutritional value. Biosensing technologies, such as electrochemical and optical biosensors, offer rapid, portable, and sensitive VB12 assessment. Carbon dot-based fluorescent nanosensors, nanocluster-based fluorescent probes, and electrochemical sensors show promise for precise detection, especially in pharmaceutical and biomedical applications.


Assuntos
Alimentos Fortificados , Vitamina B 12 , Animais , Vitamina B 12/química , Preparações de Ação Retardada , Vitaminas , Insulina/química
4.
Trends Analyt Chem ; 157: 116750, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36060607

RESUMO

Rapid, highly sensitive, and accurate virus circulation monitoring techniques are critical to limit the spread of the virus and reduce the social and economic burden. Therefore, point-of-use diagnostic devices have played a critical role in addressing the outbreak of COVID-19 (SARS-CoV-2) viruses. This review provides a comprehensive overview of the current techniques developed for the detection of SARS-CoV-2 in various body fluids (e.g., blood, urine, feces, saliva, tears, and semen) and considers the mutations (i.e., Alpha, Beta, Gamma, Delta, Omicron). We classify and comprehensively discuss the detection methods depending on the biomarker measured (i.e., surface antigen, antibody, and nucleic acid) and the measurement techniques such as lateral flow immunoassay (LFIA), enzyme-linked immunosorbent assay (ELISA), reverse transcriptase-polymerase chain reaction (RT-PCR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), microarray analysis, clustered regularly interspaced short palindromic repeats (CRISPR) and biosensors. Finally, we addressed the challenges of rapidly identifying emerging variants, detecting the virus in the early stages of infection, the detection sensitivity, selectivity, and specificity, and commented on how these challenges can be overcome in the future.

5.
Crit Rev Food Sci Nutr ; : 1-31, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36200775

RESUMO

This study comprehensively reviewed the effect of controlled enzymatic hydrolysis on the bioactivity of pulse protein hydrolysates (PPHs). Proteolysis results in the partial structural unfolding of pulse proteins with an increase in buried hydrophobic groups of peptide sequences. The use of PPHs in a dose-dependent manner can enhance free radical scavenging and improve antioxidant activities regarding inhibition of lipid oxidation, ferric reducing power, metal ion chelation, and ß-carotene bleaching inhibition. Ultrafiltered peptide fractions with low molecular weights imparted angiotensin-I converting enzyme (ACE) inhibitory effects during in vitro simulated gastrointestinal digestion and in vivo conditions. Ultrasonication, high-pressure pretreatments, and glycosylation as post-treatments can improve the antiradical, antioxidant, and ACE inhibitory activities of PPHs. The electrostatic attachment of pulse peptides to microbial cells can inhibit the growth and activity of bacteria and fungi. Bioactive pulse peptides can reduce serum cholesterol and triglycerides, and inhibit the formation of adipocyte lipid storage, allergenic factors, inflammatory markers, and arterial thrombus without cytotoxicity. The combination of germination and enzymatic hydrolysis can significantly increase the protein digestibility and bioavailability of essential amino acids. Moreover, the utilization and enrichment of bakery and meat products with functional PPHs ensure quality, safety, and health aspects of food products.

6.
Anal Chem ; 92(7): 4798-4806, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32167737

RESUMO

The research in biomedicine, cell signaling, diagnostics, and biocatalysis rely on selective protein binders that specifically capture a protein in a complex medium for either preparative or analytical use. These molecules are generally of biological origin and exposed to instability, denaturation, high cost, and inherently low binding capability. Imprinted polymers, serving as the artificial protein binders, demonstrate good potential to overcome these drawbacks. In this study, a novel epitope imprinting strategy is reported by employing double-cysteine-modified peptides as the templates and adsorbing the templates on a gold surface by means of forming self-assembled monolayer bridges, followed by electropolymerization to create a polymer network. The imprinted surface was initially designed to demonstrate specific affinity toward a short peptide (i.e., the epitope) or a target protein (i.e., neuron specific enolase) in buffer. This surface was subsequently used to measure the cancer biomarker in human serum that allows detecting 12 times lower concentration than threshold level of the biomarker. The molecular receptors exhibited a Kd < 65 pM for their respective target protein and low cross-reactivity with four nonspecific molecules. As compared to current strategies for the epitope imprinting, for example, through traditional, vertically adsorbed, or histidine-modified peptides, such a molecularly tunable system based on a surface-imprinting process may provide more efficient sensing systems with desirable affinity, sensitivity, and specificity in diagnostics applications.


Assuntos
Biomarcadores Tumorais/sangue , Epitopos/química , Neoplasias Pulmonares/sangue , Impressão Molecular , Oligopeptídeos/sangue , Carcinoma de Pequenas Células do Pulmão/sangue , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Humanos , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
Sensors (Basel) ; 20(4)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079119

RESUMO

Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.


Assuntos
Biomarcadores/química , Técnicas Biossensoriais , Grafite/química , Pontos Quânticos/química , Humanos , Nanoestruturas/química
8.
Sensors (Basel) ; 19(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810313

RESUMO

In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/química , Humanos
9.
Anal Chem ; 87(13): 6801-7, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26008649

RESUMO

Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.


Assuntos
Impressão Molecular , Polímeros/química , Vírus/isolamento & purificação , Microbiologia da Água , Microscopia Eletrônica de Transmissão
10.
Food Chem ; 448: 139069, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574712

RESUMO

A combined approach of microbial transglutaminase (MTGase) crosslinking and high-intensity ultrasound (HIU) was implemented to improve the physicochemical, rheological, structural, and thermal properties, as well as the targeted release of vitamin B12 of lesser mealworm protein isolate (LMPI)-based gels. Prolonging HIU to 60 min significantly reduced LMPIs' size, polydispersity, zeta-potential, and fluorescence intensity while increasing surface hydrophobicity, free amino (FAGs), and sulfhydryl (FSGs) groups. The MTGase-catalyzed LMPI gels effectively decreased the content of FAGs and FSGs. LMPI gels from 60 and 75 min HIU and MTGase catalysis exhibited a shear-thinning flow behavior, superior thermal stability, and improved water retention and gel strength with the most controlled release of vitamin B12 during in vitro simulated gastrointestinal digestion. Incorporating freeze-dried gel powders from 60 min HIU-treated MTGase-catalyzed LMPI and pea protein isolate into the dough of a new gluten-free bread improved physicochemical, textural, and sensory properties, with notable vitamin B12 retention rate.

11.
ACS Omega ; 9(28): 30737-30750, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035901

RESUMO

Acute myocardial infarction (AMI) is a severe cardiovascular disease characterized by heart muscle damage due to inadequate blood supply, leading to a life-threatening risk of heart attack. Herein, we report on the design of polyaminophenol-based thin film functional polymers and their thorough optimization by electrochemical, spectroscopic, and microscopic techniques to develop a high-performance point-of-care voltammetric monitoring system. Molecularly imprinted polymer-based cTnI-responsive nanocomposite materials were prepared on an electrode surface by imprinting a specific cTnI epitope, integrating polyaminophenol electrodeposition, along with gold nanoparticles (AuNPs) and graphene quantum dots (GQDs). The characterization techniques, including cyclic and square wave voltammetries, electrochemical impedance spectroscopy, atomic force microscopy, fluorescence microscopy, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements proved the efficient fabrication of the voltammetric monitoring system relying on cTnI-responsive functional thin films. The sensing platform prepared with the optimized nanocomposite composition of AuNPs, GQDs, and molecularly imprinted polymers exhibited very high sensitivity, reproducibility, specificity, and affinity toward cTnI. The sensor showed a storage stability of 30 days, demonstrating great potential for use in early and point-of-care diagnosis of AMI with its 18 min detection time.

12.
Front Med (Lausanne) ; 11: 1390634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091290

RESUMO

In the relentless pursuit of precision medicine, the intersection of cutting-edge technology and healthcare has given rise to a transformative era. At the forefront of this revolution stands the burgeoning field of wearable and implantable biosensors, promising a paradigm shift in how we monitor, analyze, and tailor medical interventions. As these miniature marvels seamlessly integrate with the human body, they weave a tapestry of real-time health data, offering unprecedented insights into individual physiological landscapes. This log embarks on a journey into the realm of wearable and implantable biosensors, where the convergence of biology and technology heralds a new dawn in personalized healthcare. Here, we explore the intricate web of innovations, challenges, and the immense potential these bioelectronics sentinels hold in sculpting the future of precision medicine.

13.
Talanta ; 279: 126558, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047630

RESUMO

Although membrane technology has demonstrated outstanding pathogen removal capabilities, current commercial membranes are insufficient for removing small viruses at trace levels due to certain limitations. The theoretical and practical significance of developing a new form of hydrophilic, anti-fouling, and virus-specific ultra-purification membrane with high capturing and separation efficiency, stability, and throughput for water treatment is of the utmost importance. In this study, molecularly imprinted membranes (MIMs) were fabricated from polyvinylidene fluoride (PVDF) membranes utilizing novel surface hydrophilic modification techniques, followed by the immobilization of virus-specific molecularly imprinted nanoparticles (nanoMIPs) as synthetic receptors. Three distinct membrane functionalization strategies were established and optimized for the first time: membrane functionalization with (i) polyethyleneimine (PEI) and dopamine (DOP), (ii) PEI and 3-(chloropropyl)-trimethoxysilane (CTS), and (iii) chitosan (CS). Hydrophilicity was enhanced significantly as a result of these modification strategies. Additionally, the modifications enabled spacer arms between the membrane surface and the nanoMIPs to decrease steric hindrance. The surface chemistry, morphology, and membrane performance results from the characterization analysis of the MIMs demonstrated excellent hydrophilicity (e.g., the functionalized membrane presented 37.84° while the unmodified bare membrane exhibited 128.94° of water contact angle), higher permeation flux (145.96 L m-2 h-1 for the functionalized membrane), excellent uptake capacity (up to 99.99 % for PEI-DOP-MIM and CS-MIM), and recovery (more than 80 % for PEI-DOP-MIM). As proof of concept, the cutting-edge MIMs were able to eliminate the model adenoviruses up to 99.99 % from water. The findings indicate that the novel functionalized PVDF membranes hold promise for implementation in practical applications for virus capture and separation.


Assuntos
Membranas Artificiais , Polivinil , Propriedades de Superfície , Ultrafiltração , Polivinil/química , Ultrafiltração/métodos , Interações Hidrofóbicas e Hidrofílicas , Vírus/isolamento & purificação , Impressão Molecular/métodos , Polietilenoimina/química , Purificação da Água/métodos , Nanopartículas/química , Polímeros de Fluorcarboneto
14.
ACS Sens ; 9(4): 1831-1841, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489767

RESUMO

Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks. Herein, computationally designed epitope-imprinted polymers (eIPs) are conjugated with a portable piezoelectric sensing platform to establish a sensitive and robust biosensor for the human pathogenic adenovirus (HAdV). The template epitope is selected from the knob part of the HAdV capsid, ensuring surface accessibility. Computational simulations are performed to evaluate the conformational stability of the selected epitope. Further, molecular dynamics simulations are executed to investigate the interactions between the epitope and the different functional monomers for the smart design of eIPs. The HAdV epitope is imprinted via the solid-phase synthesis method to produce eIPs using in silico-selected ingredients. The synthetic receptors show a remarkable detection sensitivity (LOD: 102 pfu mL-1) and affinity (dissociation constant (Kd): 6.48 × 10-12 M) for HAdV. Moreover, the computational eIPs lead to around twofold improved binding behavior than the eIPs synthesized with a well-established conventional recipe. The proposed computational strategy holds enormous potential for the intelligent design of ultrasensitive imprinted polymer binders.


Assuntos
Adenovírus Humanos , Epitopos , Humanos , Adenovírus Humanos/imunologia , Adenovírus Humanos/química , Epitopos/imunologia , Epitopos/química , Técnicas Biossensoriais/métodos , Polímeros/química , Simulação de Dinâmica Molecular , Polímeros Molecularmente Impressos/química , Impressão Molecular/métodos , Limite de Detecção , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/química
15.
Biosensors (Basel) ; 13(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36831995

RESUMO

A novel point-of-care surface plasmon resonance (SPR) sensor was developed for the sensitive and real-time detection of cardiac troponin I (cTnI) using epitope-imprinted molecular receptors. The surface coverage of a nano-molecularly imprinted polymer (nanoMIP)-functionalized SPR sensor chip and the size of nanoMIPs (155.7 nm) were characterized using fluorescence microscopy and dynamic light scattering techniques, respectively. Atomic force microscopy, electrochemical impedance spectroscopy, square wave voltammetry and cyclic voltammetry techniques confirmed the successful implementation of each step of the sensor fabrication. The SPR bio-detection assay was initially established by targeting the cTnI peptide template, and the sensor allowed the detection of the peptide in the concentration range of 100-1000 nM with a correlation coefficient (R2) of 0.96 and limit of detection (LOD) of 76.47 nM. The optimum assay conditions for protein recognition were subsequently determined, and the cTnI biomarker could be detected in a wide concentration range (0.78-50 ng mL-1) with high reproducibility (R2 = 0.91) and sensitivity (LOD: 0.52 ng mL-1). The overall sensor results were subjected to three binding isotherm models, where nanoMIP-cTnI interaction followed the Langmuir binding isotherm with the dissociation constant of 2.99 × 10-11 M, indicating a very strong affinity between the cTnI biomarker and epitope-imprinted synthetic receptor. Furthermore, the selectivity of the sensor was confirmed through studying with a control nanoMIP that was prepared by imprinting a non-specific peptide template. Based on the cross-reactivity tests with non-specific molecules (i.e., glucose, p53 protein, transferrin and bovine serum albumin), the nanoMIP-SPR sensor is highly specific for the target biomarker. The developed biomimetic sensor, relying on the direct assay strategy, holds great potential not only for the early and point-of-care testing of acute myocardial infarction but also for other life-threatening diseases that can be diagnosed by determining the elevated levels of certain biomarkers.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Infarto do Miocárdio , Humanos , Ressonância de Plasmônio de Superfície/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Impressão Molecular/métodos , Limite de Detecção , Polímeros Molecularmente Impressos , Troponina I , Técnicas Biossensoriais/métodos
16.
Food Chem ; 408: 135209, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563624

RESUMO

Insect oil is one of the most sustainable lipid sources with remarkable health effects. Herein, the type of organic solvents (i.e., n-hexane, ethanol, and isopropanol) and their binary mixtures was evaluated based on the quantity (e.g., yield extraction) and quality (e.g., bioactive compounds, thermal stability, DPPH scavenging rate, fatty acid profile, and nutritional indices) of lesser mealworm oils. The oils extracted by ethanol/isopropanol and ethanol/n-hexane significantly showed the highest extraction yield and efficiency, lightness, accelerated thermal stability, phenolics, tocopherols, vitamin D, campesterol, ß-sitosterol, phosphatidylinositol and phosphatic acid, linoleic acid, and hypocholesterolemic/hypercholesterolemic ratio, while these organic mixtures meaningfully extracted lipids with the lowest peroxide value, free fatty acid, and atherogenicity and thrombogenicity indices. These solvents compared to pure ones could dissolve membrane and internal lipids with the complete disintegration of external structures. The ethanol/isopropanol mixture would be a promising solvent for n-hexane substitution to extract this oil on an industrial scale.


Assuntos
Antioxidantes , Tenebrio , Animais , Ácidos Graxos , Óleos de Plantas/química , Larva , 2-Propanol , Solventes/química , Etanol
17.
Micromachines (Basel) ; 14(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241709

RESUMO

Simple, fast, selective, and reliable detection of human epidermal growth factor receptor 2 (HER2) is of utmost importance in the early diagnosis of breast cancer to prevent its high prevalence and mortality. Molecularly imprinted polymers (MIPs), also known as artificial antibodies, have recently been used as a specific tool in cancer diagnosis and therapy. In this study, a miniaturized surface plasmon resonance (SPR)-based sensor was developed using epitope-mediated HER2-nanoMIPs. The nanoMIP receptors were characterized using dynamic light scattering (DLS), zeta potential, Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and fluorescent microscopy. The average size of the nanoMIPs was determined to be 67.5 ± 12.5 nm. The proposed novel SPR sensor provided superior selectivity to HER2 with a detection limit (LOD) of 11.6 pg mL-1 in human serum. The high specificity of the sensor was confirmed by cross-reactivity studies using P53, human serum albumin (HSA), transferrin, and glucose. The sensor preparation steps were successfully characterized by employing cyclic and square wave voltammetry. The nanoMIP-SPR sensor demonstrates great potential for use in the early diagnosis of breast cancer as a robust tool with high sensitivity, selectivity, and specificity.

18.
Membranes (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36363672

RESUMO

Waterborne viruses are a public health concern due to relatively small infection doses. Particularly, adenoviruses (AdVs) are more resistant than RNA viruses to water purification treatments in terms of ultraviolet (UV) irradiation, pH, and chlorination tolerance. Moreover, AdVs are one of the most predominant waterborne viruses. Membrane separations have proven superior removal capabilities of waterborne pathogens over other separation methods. However, virus removal at ultratrace levels is still a significant challenge for current membrane technology. This study successfully addressed this challenge by developing a bioselective polyethersulfone (PES) membrane by a joint strategy involving chitosan hydrophilic surface modification and the immobilization of adenovirus-specific molecularly imprinted nanoparticles (nanoMIPs). The topological and chemical changes taking place on the membrane surface were characterized by using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, hydrophilicity and membrane performance were investigated in terms of swelling behavior, permeation flux, and surface fouling studies. The membrane efficacy was evaluated by filtration experiments, where the virus concentration of the loading solution before filtration and the permeates after filtration was quantified. The novel bioselective membrane showed excellent virus removal capabilities by separating 99.99% of the viruses from the water samples.

19.
Gels ; 8(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36135262

RESUMO

There is a high demand for designing healthy-functional dairy gels with a newly structured protein network in the food industry. Non-fat yogurt gels enriched with stable tarragon essential oil-nanoemulsions (TEO-NEs) using crosslinking of microbial transglutaminase (MTGase) were developed. The gas chromatography-mass spectrometry analysis showed that methyl chavicol (85.66%) was the major component in TEO extracted by the hydrodistillation process. The storage-dependent droplet size and physicochemical stability data of samples at room temperature for 30 days revealed that the TEO-NE containing 0.5% tween-80 and 1:2 TEO/sunflower oil had the lowest peroxide value and droplet growth ratio. The response surface methodology-based formulation optimization of free-fat yogurt gels using MTGase (0.15-0.85 U/g) and the best TEO-NE (0.5-3.02%) using the fitted second-order polynomial models proved that the combination of 0.87% TEO-NE and 0.70 U/g MTGase led to the desired pH (4.569) and acidity (88.3% lactic acid), minimum syneresis (27.03 mL/100 g), and maximum viscosity (6.93 Pa s) and firmness (0.207 N) responses. Scanning electron microscopy images visualized that the MTGase-induced crosslinks improved the gel structure to increase the firmness and viscosity with a reduction in the syneresis rate. The optimal yogurt gel as a nutritious diet not only provided the highest organoleptic scores but also maintained its storage-related quality with the lowest mold/yeast growth and free-radical oxidation changes.

20.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290666

RESUMO

The ultrasound-assisted extraction (UAE) of oil from lesser mealworm (Alphitobius diaperinus L.) larvae powders (LMLPs) using ethanol/isopropanol as the superior solvent was optimized. The evaluation of time (9.89−35.11 min), solvent-to-LMLPs (2.39−27.61 v/w), and temperature (16.36−83.64 °C) showed that the highest extraction efficiency (EE, 88.08%) and in vitro antioxidant activity (IVAA) of reducing power (0.651), and DPPH free-radical scavenging capacity (70.79%) were achieved at 22.5 v/w solvent-to-LMLPs and 70 °C for 22.64 min. Optimal ultrasound conditions significantly improved the EE than n-hexane extraction (60.09%) by reducing the electric energy consumption by ~18.5 times from 0.637 to 0.035 kWh/g. The oil diffusivity in ethanol-isopropanol during the UAE (0.97 × 10−9 m2/s) was much better than that of n-hexane (5.07 × 10−11 m2/s). The microstructural images confirmed the high efficiency of ethanol-isopropanol in the presence of ultrasounds to remove oil flakes from the internal and external surfaces of LMLPs. The improved IVAA was significantly associated with the total phenolic (4.306 mg GAE/g, r = 0.991) and carotenoid (0.778 mg/g, r = 0.937) contents (p < 0.01). Although there was no significant difference in the fatty acid profile between the two extracted oils, ethanol-isopropanol under sonication acceptably improved oxidative stability with lower peroxides, conjugated dienes and trienes, and free fatty acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA