Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256256

RESUMO

Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid-liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes.


Assuntos
Proteínas Intrinsicamente Desordenadas , Animais , Proteínas de Plantas , Proteínas de Membrana , Agricultura , Desenvolvimento Embrionário
2.
Nanomedicine ; 45: 102591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907618

RESUMO

The efficacy of Adoptive Cell Therapy (ACT) for solid tumor is still mediocre. This is mainly because tumor cells can hijack ACT T cells' immune checkpoint pathways to exert immunosuppression in the tumor microenvironment. Immune Checkpoint Inhibitors such as anti-PD-1 (aPD1) can counter the immunosuppression, but the synergizing effects of aPD1 to ACT was still not satisfactory. Here we demonstrate an approach to safely anchor aPD1-formed nanogels onto T cell surface via bio-orthogonal click chemistry before adoptive transfer. The spatial-temporal co-existence of aPD1 with ACT T cells and the responsive drug release significantly improved the treatment outcome of ACT in murine solid tumor model. The average tumor weight of the group treated by cell-surface anchored aPD1 was only 18 % of the group treated by equivalent dose of free aPD1 and T cells. The technology can be broadly applicable in ACTs employing natural or Chimeric Antigen Receptor (CAR) T cells.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Terapia Baseada em Transplante de Células e Tecidos , Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva , Camundongos , Nanogéis , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Microambiente Tumoral
3.
J Sci Food Agric ; 102(14): 6603-6611, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35596659

RESUMO

BACKGROUND: Under the intensive modern poultry farming system, the lung of duck is one of the main target organs for various bacterial and viral infections. Curcumin is a kind of natural polyphenol compound for which various beneficial biological functions exist, including being an anti-inflammatory, antioxidant, and antiviral. The aim of this work was to investigate the mechanism of curcumin-alleviated lipopolysaccharide (LPS)-induced lung damage by the nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant reaction element (ARE) and nuclear factor kappa B (NF-κB) signaling pathway in ducks. RESULTS: In total, 450 one-day-old male specific pathogen-free ducks were randomly assigned into three dietary treatments: CON, basal diet; LPS, basal diet + LPS treatment; LPS + CUR, basal diet + LPS + 500 mg kg-1 of curcumin. At the end of the experiment (21 days), ducks in LPS treatment were challenged with 5 mg LPS per kilogram of body weight and the other two treatments were injected with the same dose of phosphate-buffered saline solution. The results showed that LPS caused acute inflammation, oxidation stress, and lung injury. Dietary addition of curcumin significantly relieved the oxidation stress and inflammation parameters. Moreover, the results showed that remission may be through the signaling pathways of both Nrf2-ARE and NF-κB. CONCLUSION: In conclusion, dietary supplementation of 500 mg kg-1 of curcumin exhibited a lung-protective effect in ducks. This experiment broadens the mode of metabolism actions of curcumin in the target organs and provides an insight for the application of curcumin in waterfowl feed. © 2022 Society of Chemical Industry.


Assuntos
Curcumina , Lesão Pulmonar , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antivirais/farmacologia , Curcumina/uso terapêutico , Patos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfatos/farmacologia , Polifenóis/farmacologia , Solução Salina , Transdução de Sinais
4.
Plant Physiol ; 183(2): 570-587, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32238442

RESUMO

Intrinsically disordered proteins function as flexible stress modulators in vivo through largely unknown mechanisms. Here, we elucidated the mechanistic role of an intrinsically disordered protein, REPETITIVE PRO-RICH PROTEIN (RePRP), in regulating rice (Oryza sativa) root growth under water deficit. With nearly 40% Pro, RePRP is induced by water deficit and abscisic acid (ABA) in the root elongation zone. RePRP is sufficient and necessary for repression of root development by water deficit or ABA. We showed that RePRP interacts with the highly ordered cytoskeleton components actin and tubulin both in vivo and in vitro. Binding of RePRP reduces the abundance of actin filaments, thus diminishing noncellulosic polysaccharide transport to the cell wall and increasing the enzyme activity of Suc synthase. RePRP also reorients the microtubule network, which leads to disordered cellulose microfibril organization in the cell wall. The cell wall modification suppresses root cell elongation, thereby generating short roots, whereas increased Suc synthase activity triggers starch accumulation in "heavy" roots. Intrinsically disordered proteins control cell elongation and carbon reserves via an order-by-disorder mechanism, regulating the highly ordered cytoskeleton for development of "short-but-heavy" roots as an adaptive response to water deficit in rice.


Assuntos
Citoesqueleto/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Microtúbulos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Ácido Abscísico/metabolismo , Citoesqueleto/genética , Regulação da Expressão Gênica de Plantas , Proteínas Intrinsicamente Desordenadas/genética , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética
5.
Plant Biotechnol J ; 18(9): 1969-1983, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32034845

RESUMO

Grain/seed yield and plant stress tolerance are two major traits that determine the yield potential of many crops. In cereals, grain size is one of the key factors affecting grain yield. Here, we identify and characterize a newly discovered gene Rice Big Grain 1 (RBG1) that regulates grain and organ development, as well as abiotic stress tolerance. Ectopic expression of RBG1 leads to significant increases in the size of not only grains but also other major organs such as roots, shoots and panicles. Increased grain size is primarily due to elevated cell numbers rather than cell enlargement. RBG1 is preferentially expressed in meristematic and proliferating tissues. Ectopic expression of RBG1 promotes cell division, and RBG1 co-localizes with microtubules known to be involved in cell division, which may account for the increase in organ size. Ectopic expression of RBG1 also increases auxin accumulation and sensitivity, which facilitates root development, particularly crown roots. Moreover, overexpression of RBG1 up-regulated a large number of heat-shock proteins, leading to enhanced tolerance to heat, osmotic and salt stresses, as well as rapid recovery from water-deficit stress. Ectopic expression of RBG1 regulated by a specific constitutive promoter, GOS2, enhanced harvest index and grain yield in rice. Taken together, we have discovered that RBG1 regulates two distinct and important traits in rice, namely grain yield and stress tolerance, via its effects on cell division, auxin and stress protein induction.


Assuntos
Oryza , Divisão Celular , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
New Phytol ; 218(1): 183-200, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29288621

RESUMO

Fatty acids (FAs) and sterols constitute building blocks of eukaryotic membranes and lipid signals. Co-regulation of FA and sterol synthesis is mediated by sterol regulatory element-binding proteins in animals but remains elusive in plants. We reported recently that Arabidopsis ACYL-COA-BINDING PROTEIN1 (ACBP1) modulates sterol synthesis via protein-protein interaction with STEROL C4-METHYL OXIDASE1-1 (SMO1-1). Herein, ACBP1 was demonstrated to co-express and interact with SMO1-2 by yeast two-hybrid, co-localization, pull-down, co-immunoprecipitation and ß-glucuronidase assays. SMO1-2 silenced in acbp1 was used in phenotyping, GC-MS and expression profiling. ACBP1 co-expressed with SMO1-2 in embryo sacs, pollen and trichomes, corroborating with cooperative tissue-specific functions unseen with SMO1-1. SMO1-2 silencing in acbp1 impaired seed development, male and female gamete transmission, and pollen function. Genes encoding homeodomain-leucine zipper IV transcription factors (HDG5, HDG10, HDG11 and GLABRA2), which potentially bind phospholipids/sterols, were transcribed aberrantly. GLABRA2 targets (MYB23, MUM4 and PLDα1) were misregulated, causing glabra2-resembling trichome, seed coat mucilage and oil-accumulating phenotypes. Together with altered sterol and FA compositions upon ACBP1 mutation and/or SMO1-2 silencing, ACBP1-SMO1 interaction appears to mediate homeostatic co-regulation of FAs and sterols, which serve as lipid modulators for gene expression of homeodomain-leucine zipper IV transcription factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Oxigenases de Função Mista/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Flores/metabolismo , Inativação Gênica , Células Germinativas Vegetais/metabolismo , Germinação , Proteínas de Homeodomínio/metabolismo , Complexos Multiproteicos/metabolismo , Mutação/genética , Fenótipo , Raízes de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Ligação Proteica , Reprodução , Sementes/embriologia , Sementes/genética , Esteróis/metabolismo , Tricomas/metabolismo
7.
Plant Physiol ; 174(3): 1420-1435, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28500265

RESUMO

Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1 Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/-smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/-smo1-1 Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Sementes/metabolismo , Esteróis/biossíntese , Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Polinização , Mapeamento de Interação de Proteínas , Reprodução
8.
Plant Cell Physiol ; 58(9): 1494-1506, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922746

RESUMO

Ectopic expression of the rice WINDING 1 (WIN1) gene leads to a spiral phenotype only in shoots but not in roots. Rice WIN1 belongs to a specific class of proteins in cereal plants containing a Bric-a-Brac/Tramtrack/Broad (BTB) complex, a non-phototropic hypocotyl 3 (NPH3) domain and a coiled-coil motif. The WIN1 protein is predominantly localized to the plasma membrane, but is also co-localized to plasmodesmata, where it exhibits a punctate pattern. It is observed that WIN1 is normally expressed in roots and the shoot-root junction, but not in the rest of shoots. In roots, WIN1 is largely localized to the apical and basal sides of cells. However, upon ectopic expression, WIN1 appears on the longitudinal sides of leaf sheath cells, correlated with the appearance of a spiral phenotype in shoots. Despite the spiral phenotype, WIN1-overexpressing plants exhibit a normal phototropic response. Although treatments with exogenous auxins or a polar auxin transport inhibitor do not alter the spiral phenotype, the excurvature side has a higher auxin concentration than the incurvature side. Furthermore, actin filaments are more prominent in the excurvature side than in the incurvature side, which correlates with cell size differences between these two sides. Interestingly, ectopic expression of WIN1 does not cause either unequal auxin distribution or actin filament differences in roots, so a spiral phenotype is not observed in roots. The action of WIN1 appears to be different from that of other proteins causing a spiral phenotype, and it is likely that WIN1 is involved in 1-N-naphthylphthalamic acid-insensitive plasmodesmata-mediated auxin transport.


Assuntos
Ácidos Indolacéticos/metabolismo , Oryza/anatomia & histologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Actinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Família Multigênica , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Plasmodesmos/efeitos dos fármacos , Plasmodesmos/metabolismo , Transporte Proteico/efeitos dos fármacos
9.
Artigo em Zh | MEDLINE | ID: mdl-30121061

RESUMO

Information on the endemic situation of malaria in the joint malaria control zone of Guizhou and Guangxi Provinces from 2012 to 2013 was collected. Blood test results from fever patients and the healthy population were obtained. The spatiotemperal and occupational distributions of malaria cases were analyzed. During 2012-2013, blood tests were performed in 253 606 local residents and 11 212 returning residents in the joint area, as well as in 19 843 migrants from outside the area, resulting in discovery of 30 Plasmodium-infected cases only in the returning residents. All the 30 cases were imported from abroad, most of whom were electricity workers returning from the Africa. Among them, 28 cases were reported in 6 counties in Guangxi, and 2 in 2 counties/cities in Guizhou.


Assuntos
Malária , África , China , Humanos , Incidência
10.
Plant Cell Physiol ; 56(2): 322-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25395473

RESUMO

In Arabidopsis, six acyl-CoA-binding proteins (ACBPs) have been identified and they have been demonstrated to function in plant stress responses and development. Three of these AtACBPs (AtACBP4-AtACBP6) are cytosolic proteins and all are expressed in floral organs as well as in other tissues. The roles of cytosolic AtACBPs in floral development were addressed in this study. To this end, a T-DNA insertional knockout mutant of acbp5 was characterized before use in crosses with the already available acbp4 and acbp6 T-DNA knockout mutants to examine their independent and combinatory functions in floral development. The single-gene knockout mutations did not cause any significant phenotypic changes, while phenotypic deficiencies affecting siliques and pollen were observed in the double mutants (acbp4acbp6 and acbp5acbp6) and the acbp4acbp5acbp6 triple mutant. Vacuole accumulation in the acbp4acbp6, acbp5acbp6 and acbp4acbp5acbp6 pollen was the most severe abnormality occurring in the double and triple mutants. Furthermore, scanning electron microscopy and transmission electron microscopy revealed exine and oil body defects in the acbp4acbp5acbp6 mutant, which also displayed reduced ability in in vitro pollen germination. Transgenic Arabidopsis expressing ß-glucuronidase (GUS) driven from the various AtACBP promoters indicated that AtACBP6pro::GUS expression overlapped with AtACBP4pro::GUS expression in pollen grains and with AtACBP5pro::GUS expression in the microspores and tapetal cells. Taken together, these results suggest that the three cytosolic AtACBPs play combinatory roles in acyl-lipid metabolism during pollen development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citosol/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Inibidor da Ligação a Diazepam/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Mutação/genética , Fenótipo , Óleos de Plantas/metabolismo , Pólen/anatomia & histologia , Pólen/genética , Reprodução/genética
11.
New Phytol ; 203(2): 469-482, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24738983

RESUMO

Acyl-CoA-binding proteins (ACBPs) show conservation at the acyl-CoA-binding (ACB) domain which facilitates binding to acyl-CoA esters. In Arabidopsis thaliana, six ACBPs participate in development and stress responses. Rice (Oryza sativa) also contains six genes encoding ACBPs. We investigated differences in subcellular localization between monocot rice and eudicot A. thaliana ACBPs. The subcellular localization of the six OsACBPs was achieved via transient expression of green fluorescence protein (GFP) fusions in tobacco (Nicotiana tabacum) epidermal cells, and stable transformation of A. thaliana. As plant ACBPs had not been reported in the peroxisomes, OsACBP6::GFP localization was confirmed by transient expression in rice sheath cells. The function of OsACBP6 was investigated by overexpressing 35S::OsACBP6 in the peroxisomal abc transporter1 (pxa1) mutant defective in peroxisomal fatty acid ß-oxidation. As predicted, OsACBP1::GFP and OsACBP2::GFP were localized to the cytosol, and OsACBP4::GFP and OsACBP5::GFP to the endoplasmic reticulum (ER). However, OsACBP3::GFP displayed subcellular multi-localization while OsACBP6::GFP was localized to the peroxisomes. 35S::OsACBP6-OE/pxa1 lines showed recovery in indole-3-butyric acid (IBA) peroxisomal ß-oxidation, wound-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) expression and jasmonic acid (JA) accumulation. These findings indicate a role for OsACBP6 in peroxisomal ß-oxidation, and suggest that rice ACBPs are involved in lipid degradation in addition to lipid biosynthesis.


Assuntos
Oryza/metabolismo , Peroxissomos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciclopentanos/metabolismo , Citosol/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Indóis/metabolismo , Metabolismo dos Lipídeos/genética , Oryza/genética , Oxilipinas/metabolismo , Peroxissomos/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico , Nicotiana/genética
12.
Biomol Biomed ; 2024 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-38912883

RESUMO

Soluble suppression of tumorigenicity-2 (sST-2), a marker of myocardial fibrosis and remodeling, has been related to the development of atrial fibrillation (AF). The aim of this meta-analysis was to evaluate the relationship between baseline serum sST-2 levels and the risk of AF recurrence after ablation. Relevant observational studies were retrieved from PubMed, Web of Science, Embase, Wanfang and China National Knowledge Infrastructure (CNKI). A random-effects model was used to combine the data, accounting for between-study heterogeneity. Fourteen prospective cohorts were included. Pooled results showed higher sST-2 levels before ablation in patients with AF recurrence compared to those without AF recurrence (standardized mean difference = 1.15, 95% confidence interval [CI] = 0.67 to 1.63, P < 0.001; I2 = 92%). Meta-regression analysis suggested that the proportion of patients with paroxysmal AF (PaAF) was positively related to the difference in serum sST-2 levels between patients with and without AF recurrence (coefficient = 0.033, P < 0.001). Subgroup analysis showed a more remarkable difference in serum sST-2 levels between patients with and without AF recurrence in studies where PaAF was ≥ 60% compared to those where it was < 60% (P = 0.007). Further analyses showed that high sST-2 levels before ablation were associated with an increased risk of AF recurrence (odds ratio [OR] per 1 ng/mL increment of sST-2 =1.05, OR for high versus low sST-2 = 1.73, both P values < 0.05). In conclusion, high sST-2 baseline levels may be associated with an increased risk of AF recurrence after catheter ablation.

13.
Medicine (Baltimore) ; 103(27): e38631, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968504

RESUMO

Current research suggests that mitochondrial dysfunction can be a contributing factor in the development of cardiac arrhythmias. In pursuit of elucidating the causal link between the biological functions of mitochondria and the occurrence of atrial fibrillation/flutter, we conducted a 2-sample Mendelian randomization (MR) study. Mitochondrial proteins were selected for exposure in this study. To enhance the accuracy of our study, we selected data on AF/AFL from the FinnGen study and the UK Biobank for MR analysis, respectively. The inverse variance-weighted method was utilized as the primary analysis technique for MR. In addition, we performed a series of sensitivity analyses to detect heterogeneity and horizontal pleiotropy. MR results indicated a significant positive association between NAD-dependent protein deacylase sirtuin-5 and AF/AFL (odds ratio = 1.084, 95% confidence interval: 1.037-1.133, P = 3.679 × 10-4, Adjusted P = .024), with consistent outcomes observed in replication analysis (odds ratio = 1.002, 95% confidence interval: 1.001-1.003, P = 4.808 × 10-4, Adjusted P = .032). NAD-dependent protein deacylase sirtuin-5 can significantly promote the occurrence of AF/AFL, and its specific mechanisms warrant further investigation.


Assuntos
Fibrilação Atrial , Flutter Atrial , Análise da Randomização Mendeliana , Fibrilação Atrial/genética , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Humanos , Flutter Atrial/genética , Flutter Atrial/epidemiologia , Sirtuínas/genética , Mitocôndrias/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
14.
J Neural Eng ; 21(2)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38565100

RESUMO

Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals.Approach. To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data.Main results. To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods.Significance. Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.


Assuntos
Interfaces Cérebro-Computador , Aprendizagem , Eletroencefalografia , Imagens, Psicoterapia , Redes Neurais de Computação , Algoritmos
15.
Comput Biol Med ; 173: 108361, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569236

RESUMO

Deep learning plays a significant role in the detection of pulmonary nodules in low-dose computed tomography (LDCT) scans, contributing to the diagnosis and treatment of lung cancer. Nevertheless, its effectiveness often relies on the availability of extensive, meticulously annotated dataset. In this paper, we explore the utilization of an incompletely annotated dataset for pulmonary nodules detection and introduce the FULFIL (Forecasting Uncompleted Labels For Inexpensive Lung nodule detection) algorithm as an innovative approach. By instructing annotators to label only the nodules they are most confident about, without requiring complete coverage, we can substantially reduce annotation costs. Nevertheless, this approach results in an incompletely annotated dataset, which presents challenges when training deep learning models. Within the FULFIL algorithm, we employ Graph Convolution Network (GCN) to discover the relationships between annotated and unannotated nodules for self-adaptively completing the annotation. Meanwhile, a teacher-student framework is employed for self-adaptive learning using the completed annotation dataset. Furthermore, we have designed a Dual-Views loss to leverage different data perspectives, aiding the model in acquiring robust features and enhancing generalization. We carried out experiments using the LUng Nodule Analysis (LUNA) dataset, achieving a sensitivity of 0.574 at a False positives per scan (FPs/scan) of 0.125 with only 10% instance-level annotations for nodules. This performance outperformed comparative methods by 7.00%. Experimental comparisons were conducted to evaluate the performance of our model and human experts on test dataset. The results demonstrate that our model can achieve a comparable level of performance to that of human experts. The comprehensive experimental results demonstrate that FULFIL can effectively leverage an incomplete pulmonary nodule dataset to develop a robust deep learning model, making it a promising tool for assisting in lung nodule detection.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Pulmão/diagnóstico por imagem
16.
Comput Biol Med ; 169: 107904, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181611

RESUMO

miRNAs are a class of small non-coding RNA molecules that play important roles in gene regulation. They are crucial for maintaining normal cellular functions, and dysregulation or dysfunction of miRNAs which are linked to the onset and advancement of multiple human diseases. Research on miRNAs has unveiled novel avenues in the realm of the diagnosis, treatment, and prevention of human diseases. However, clinical trials pose challenges and drawbacks, such as complexity and time-consuming processes, which create obstacles for many researchers. Graph Attention Network (GAT) has shown excellent performance in handling graph-structured data for tasks such as link prediction. Some studies have successfully applied GAT to miRNA-disease association prediction. However, there are several drawbacks to existing methods. Firstly, most of the previous models rely solely on concatenation operations to merge features of miRNAs and diseases, which results in the deprivation of significant modality-specific information and even the inclusion of redundant information. Secondly, as the number of layers in GAT increases, there is a possibility of excessive smoothing in the feature extraction process, which significantly affects the prediction accuracy. To address these issues and effectively complete miRNA disease prediction tasks, we propose an innovative model called Multiplex Adaptive Modality Fusion Graph Attention Network (MAMFGAT). MAMFGAT utilizes GAT as the main structure for feature aggregation and incorporates a multi-modal adaptive fusion module to extract features from three interconnected networks: the miRNA-disease association network, the miRNA similarity network, and the disease similarity network. It employs adaptive learning and cross-modality contrastive learning to fuse more effective miRNA and disease feature embeddings as well as incorporates multi-modal residual feature fusion to tackle the problem of excessive feature smoothing in GATs. Finally, we employ a Multi-Layer Perceptron (MLP) model that takes the embeddings of miRNA and disease features as input to anticipate the presence of potential miRNA-disease associations. Extensive experimental results provide evidence of the superior performance of MAMFGAT in comparison to other state-of-the-art methods. To validate the significance of various modalities and assess the efficacy of the designed modules, we performed an ablation analysis. Furthermore, MAMFGAT shows outstanding performance in three cancer case studies, indicating that it is a reliable method for studying the association between miRNA and diseases. The implementation of MAMFGAT can be accessed at the following GitHub repository: https://github.com/zixiaojin66/MAMFGAT-master.


Assuntos
Aprendizagem , MicroRNAs , Humanos , Redes Neurais de Computação , Biologia Computacional , Algoritmos
17.
Comput Med Imaging Graph ; 114: 102368, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38518412

RESUMO

Bipolar disorder (BD) is characterized by recurrent episodes of depression and mild mania. In this paper, to address the common issue of insufficient accuracy in existing methods and meet the requirements of clinical diagnosis, we propose a framework called Spatio-temporal Feature Fusion Transformer (STF2Former). It improves on our previous work - MFFormer by introducing a Spatio-temporal Feature Aggregation Module (STFAM) to learn the temporal and spatial features of rs-fMRI data. It promotes intra-modality attention and information fusion across different modalities. Specifically, this method decouples the temporal and spatial dimensions and designs two feature extraction modules for extracting temporal and spatial information separately. Extensive experiments demonstrate the effectiveness of our proposed STFAM in extracting features from rs-fMRI, and prove that our STF2Former can significantly outperform MFFormer and achieve much better results among other state-of-the-art methods.


Assuntos
Aprendizagem , Transtornos Mentais , Humanos
18.
J Neural Eng ; 21(3)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701773

RESUMO

Objective. Electroencephalogram (EEG) analysis has always been an important tool in neural engineering, and the recognition and classification of human emotions are one of the important tasks in neural engineering. EEG data, obtained from electrodes placed on the scalp, represent a valuable resource of information for brain activity analysis and emotion recognition. Feature extraction methods have shown promising results, but recent trends have shifted toward end-to-end methods based on deep learning. However, these approaches often overlook channel representations, and their complex structures pose certain challenges to model fitting.Approach. To address these challenges, this paper proposes a hybrid approach named FetchEEG that combines feature extraction and temporal-channel joint attention. Leveraging the advantages of both traditional feature extraction and deep learning, the FetchEEG adopts a multi-head self-attention mechanism to extract representations between different time moments and channels simultaneously. The joint representations are then concatenated and classified using fully-connected layers for emotion recognition. The performance of the FetchEEG is verified by comparison experiments on a self-developed dataset and two public datasets.Main results. In both subject-dependent and subject-independent experiments, the FetchEEG demonstrates better performance and stronger generalization ability than the state-of-the-art methods on all datasets. Moreover, the performance of the FetchEEG is analyzed for different sliding window sizes and overlap rates in the feature extraction module. The sensitivity of emotion recognition is investigated for three- and five-frequency-band scenarios.Significance. FetchEEG is a novel hybrid method based on EEG for emotion classification, which combines EEG feature extraction with Transformer neural networks. It has achieved state-of-the-art performance on both self-developed datasets and multiple public datasets, with significantly higher training efficiency compared to end-to-end methods, demonstrating its effectiveness and feasibility.


Assuntos
Eletroencefalografia , Emoções , Humanos , Eletroencefalografia/métodos , Emoções/fisiologia , Aprendizado Profundo , Atenção/fisiologia , Redes Neurais de Computação , Masculino , Feminino , Adulto
19.
Tumour Biol ; 34(6): 3681-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23884604

RESUMO

X-ray repair cross-complementing group 1 (XRCC1) is one of the major DNA repair proteins involved in the base excision repair and plays an important role in the maintenance of genomic integrity. Polymorphisms in XRCC1 may alter the function and repair capacity of XRCC1 protein which further results in the genetic instability and lung carcinogenesis. Previous studies investigating the relationship between XRCC1 Arg399Gln polymorphism and lung cancer risk in Chinese yielded contradictory results. A meta-analysis was performed to clarify the effect of XRCC1 Arg399Gln polymorphism on lung cancer. The association was assessed by calculating the pooled odds ratio (OR) with 95% confidence intervals (95%CI). Nineteen studies with a total of 12,835 participants were included into this meta-analysis. Overall, there was an obvious association between XRCC1 Arg399Gln polymorphism and increased risk of lung cancer under three genetic models (Gln vs. Arg: OR = 1.13, 95%CI 1.01-1.25, P = 0.029; GlnGln vs. ArArg: OR = 1.41, 95%CI 1.07-1.84, P = 0.013; GlnGln vs. ArArg/ArgGln: OR = 1.37, 95%CI 1.07-1.76, P = 0.013). Meta-analysis of 18 studies with high quality also found that there was an obvious association between XRCC1 Arg399Gln polymorphism and increased risk of lung cancer under three genetic models. There was no obvious risk of bias in the meta-analysis. Data from the current meta-analysis support the obvious association between XRCC1 Arg399Gln polymorphism and increased risk of lung cancer in Chinese.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Neoplasias Pulmonares/genética , Polimorfismo Genético , Substituição de Aminoácidos , Povo Asiático/genética , China , Predisposição Genética para Doença/etnologia , Humanos , Neoplasias Pulmonares/etnologia , Razão de Chances , Fatores de Risco , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
20.
Biomolecules ; 13(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37189374

RESUMO

Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.


Assuntos
Citoesqueleto , Microtúbulos , Plantas , Aclimatação , Adaptação Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA