Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 589(7843): 620-626, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408414

RESUMO

Adhesion G-protein-coupled receptors (GPCRs) are a major family of GPCRs, but limited knowledge of their ligand regulation or structure is available1-3. Here we report that glucocorticoid stress hormones activate adhesion G-protein-coupled receptor G3 (ADGRG3; also known as GPR97)4-6, a prototypical adhesion GPCR. The cryo-electron microscopy structures of GPR97-Go complexes bound to the anti-inflammatory drug beclomethasone or the steroid hormone cortisol revealed that glucocorticoids bind to a pocket within the transmembrane domain. The steroidal core of glucocorticoids is packed against the 'toggle switch' residue W6.53, which senses the binding of a ligand and induces activation of the receptor. Active GPR97 uses a quaternary core and HLY motif to fasten the seven-transmembrane bundle and to mediate G protein coupling. The cytoplasmic side of GPR97 has an open cavity, where all three intracellular loops interact with the Go protein, contributing to the high basal activity of GRP97. Palmitoylation at the cytosolic tail of the Go protein was found to be essential for efficient engagement with GPR97 but is not observed in other solved GPCR complex structures. Our work provides a structural basis for ligand binding to the seven-transmembrane domain of an adhesion GPCR and subsequent G protein coupling.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Glucocorticoides/química , Glucocorticoides/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestrutura , Sítios de Ligação , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Ligantes , Lipoilação , Modelos Moleculares , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(15): e2117004119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394864

RESUMO

GPR126 is a member of the adhesion G protein-coupled receptors (aGPCRs) that is essential for the normal development of diverse tissues, and its mutations are implicated in various pathological processes. Here, through screening 34 steroid hormones and their derivatives for cAMP production, we found that progesterone (P4) and 17-hydroxyprogesterone (17OHP) could specifically activate GPR126 and trigger its downstream Gi signaling by binding to the ligand pocket in the seven-transmembrane domain of the C-terminal fragment of GPR126. A detailed mutagenesis screening according to a computational simulated structure model indicated that K1001ECL2 and F1012ECL2 are key residues that specifically recognize 17OHP but not progesterone. Finally, functional analysis revealed that progesterone-triggered GPR126 activation promoted cell growth in vitro and tumorigenesis in vivo, which involved Gi-SRC pathways in a triple-negative breast cancer model. Collectively, our work identified a membrane receptor for progesterone/17OHP and delineated the mechanisms by which GPR126 participated in potential tumor progression in triple-negative breast cancer, which will enrich our understanding of the functions and working mechanisms of both the aGPCR member GPR126 and the steroid hormone progesterone.


Assuntos
Progesterona , Receptores Acoplados a Proteínas G , Receptores de Progesterona , Neoplasias de Mama Triplo Negativas , 17-alfa-Hidroxiprogesterona/metabolismo , Linhagem Celular Tumoral , Humanos , Progesterona/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
3.
J Biol Chem ; 296: 100174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303626

RESUMO

The adhesion GPCR ADGRG2, also known as GPR64, is a critical regulator of male fertility that maintains ion/pH homeostasis and CFTR coupling. The molecular basis of ADGRG2 function is poorly understood, in part because no endogenous ligands for ADGRG2 have been reported, thus limiting the tools available to interrogate ADGRG2 activity. It has been shown that ADGRG2 can be activated by a peptide, termed p15, derived from its own N-terminal region known as the Stachel sequence. However, the low affinity of p15 limits its utility for ADGRG2 characterization. In the current study, we used alanine scanning mutagenesis to examine the critical residues responsible for p15-induced ADGRG2 activity. We next designed systematic strategies to optimize the peptide agonist of ADGRG2, using natural and unnatural amino acid substitutions. We obtained an optimized ADGRG2 Stachel peptide T1V/F3Phe(4-Me) (VPM-p15) that activated ADGRG2 with significantly improved (>2 orders of magnitude) affinity. We then characterized the residues in ADGRG2 that were important for ADGRG2 activation in response to VPM-p15 engagement, finding that the toggle switch W6.53 and residues of the ECL2 region of ADGRG2 are key determinants for VPM-p15 interactions and VPM-p15-induced Gs or arrestin signaling. Our study not only provides a useful tool to investigate the function of ADGRG2 but also offers new insights to guide further optimization of Stachel peptides to activate adhesion GPCR members.


Assuntos
Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Receptores Acoplados a Proteínas G/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Expressão Gênica , Células HEK293 , Humanos , Cinética , Ligantes , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peptídeos/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Transgenes
4.
Br J Pharmacol ; 181(15): 2600-2621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38613153

RESUMO

BACKGROUND AND PURPOSE: Pancreatic islets are modulated by cross-talk among different cell types and paracrine signalling plays important roles in maintaining glucose homeostasis. Urocortin 3 (UCN3) secreted by pancreatic ß cells activates the CRF2 receptor (CRF2R) and downstream pathways mediated by different G protein or arrestin subtypes in δ cells to cause somatostatin (SST) secretion, and constitutes an important feedback circuit for glucose homeostasis. EXPERIMENTAL APPROACH: Here, we used Arrb1-/-, Arrb2-/-, Gsfl/fl and Gqfl/fl knockout mice, the G11-shRNA-GFPfl/fl lentivirus, as well as functional assays and pharmacological characterization to study how the coupling of Gs, G11 and ß-arrestin1 to CRF2R contributed to UCN3-induced SST secretion in pancreatic δ cells. KEY RESULTS: Our study showed that CRF2R coupled to a panel of G protein and arrestin subtypes in response to UCN3 engagement. While RyR3 phosphorylation by PKA at the S156, S2706 and S4697 sites may underlie the Gs-mediated UCN3- CRF2R axis for SST secretion, the interaction of SYT1 with ß-arrestin1 is also essential for efficient SST secretion downstream of CRF2R. The specific expression of the transcription factor Stat6 may contribute to G11 expression in pancreatic δ cells. Furthermore, we found that different UCN3 concentrations may have distinct effects on glucose homeostasis, and these effects may depend on different CRF2R downstream effectors. CONCLUSIONS AND IMPLICATIONS: Collectively, our results provide a landscape view of signalling mediated by different G protein or arrestin subtypes downstream of paracrine UCN3- CRF2R signalling in pancreatic ß-δ-cell circuits, which may facilitate the understanding of fine-tuned glucose homeostasis networks.


Assuntos
Receptores de Hormônio Liberador da Corticotropina , Transdução de Sinais , Somatostatina , Urocortinas , Animais , Masculino , Camundongos , Proteínas de Ligação ao GTP/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Somatostatina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Urocortinas/metabolismo
5.
Adv Sci (Weinh) ; 10(16): e2205993, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066759

RESUMO

The ankle-link complex (ALC) consists of USH2A, WHRN, PDZD7, and ADGRV1 and plays an important role in hair cell development. At present, its architectural organization and signaling role remain unclear. By establishing Adgrv1 Y6236fsX1 mutant mice as a model of the deafness-associated human Y6244fsX1 mutation, the authors show here that the Y6236fsX1 mutation disrupts the interaction between adhesion G protein-coupled receptor V subfamily member 1 (ADGRV1) and other ALC components, resulting in stereocilia disorganization and mechanoelectrical transduction (MET) deficits. Importantly, ADGRV1 inhibits WHRN phosphorylation through regional cAMP-PKA signaling, which in turn regulates the ubiquitination and stability of USH2A via local signaling compartmentalization, whereas ADGRV1 Y6236fsX1 does not. Yeast two-hybrid screening identified the E3 ligase WDSUB1 that binds to WHRN and regulates the ubiquitination of USH2A in a WHRN phosphorylation-dependent manner. Further FlAsH-BRET assay, NMR spectrometry, and mutagenesis analysis provided insights into the architectural organization of ALC and interaction motifs at single-residue resolution. In conclusion, the present data suggest that ALC organization and accompanying local signal transduction play important roles in regulating the stability of the ALC.


Assuntos
Surdez , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Surdez/genética , Surdez/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Mutação/genética , Fosforilação
6.
Diabetes ; 71(7): 1454-1471, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472681

RESUMO

Long-chain fatty acids (LCFAs) are not only energy sources but also serve as signaling molecules. GPR120, an LCFA receptor, plays key roles in maintaining metabolic homeostasis. However, whether endogenous ligand-GPR120 circuits exist and how such circuits function in pancreatic islets are unclear. Here, we found that endogenous GPR120 activity in pancreatic δ-cells modulated islet functions. At least two unsaturated LCFAs, oleic acid (OA) and linoleic acid (LA), were identified as GPR120 agonists within pancreatic islets. These two LCFAs promoted insulin secretion by inhibiting somatostatin secretion and showed bias activation of GPR120 in a model system. Compared with OA, LA exerted higher potency in promoting insulin secretion, which is dependent on ß-arrestin2 function. Moreover, GPR120 signaling was impaired in the diabetic db/db model, and replenishing OA and LA improved islet function in both the db/db and streptozotocin-treated diabetic models. Consistently, the administration of LA improved glucose metabolism in db/db mice. Collectively, our results reveal that endogenous LCFA-GPR120 circuits exist and modulate homeostasis in pancreatic islets. The contributions of phenotype differences caused by different LCFA-GPR120 circuits within islets highlight the roles of fine-tuned ligand-receptor signaling networks in maintaining islet homeostasis.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Animais , Diabetes Mellitus/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo
7.
Cell Discov ; 6: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32284878

RESUMO

Tissue regeneration, such as pancreatic islet tissue propagation in vitro, could serve as a promising strategy for diabetes therapy and personalised drug testing. However, such a strategy has not been realised yet. Propagation could be divided into two steps, in vitro expansion and repeated passaging. Even the first step of the in vitro islet expansion has not been achieved to date. Here, we describe a method that enables the expansion of islet clusters isolated from pregnant mice or wild-type rats by employing a combination of specific regeneration factors and chemical compounds in vitro. The expanded islet clusters expressed insulin, glucagon and somatostatin, which are markers corresponding to pancreatic ß cells, α cells and δ cells, respectively. These different types of cells grouped together, were spatially organised and functioned similarly to primary islets. Further mechanistic analysis revealed that forskolin in our recipe contributed to renewal and regeneration, whereas exendin-4 was essential for preserving islet cell identity. Our results provide a novel method for the in vitro expansion of islet clusters, which is an important step forward in developing future protocols and media used for islet tissue propagation in vitro. Such method is important for future regenerative diabetes therapies and personalised medicines using large amounts of pancreatic islets derived from the same person.

8.
J Exp Clin Cancer Res ; 38(1): 64, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30736843

RESUMO

BACKGROUND: CFLARL, also known as c-FLIPL, is a critical anti-apoptotic protein that inhibits activation of caspase 8 in mammalian cells. Previous studies have shown that arginine 122 of CFLARL can be mono-methylated. However, the precise role of arginine methyltransferase of CFLARL remains unknown. PRMT5 and PRMT1, which are important members of the PRMT family, catalyze the transfer of methyl groups to the arginine of substrate proteins. PRMT5 can monomethylate or symmetrically dimethylate arginine residues, while PRMT1 can monomethylate or asymmetrically dimethylate arginine residues. METHODS: Lung cancer cells were cultured following the standard protocol and the cell lysates were prepared to detect the given proteins by Western Blot analysis, and the protein interaction was assayed by co-immunoprecipitation (Co-IP) or GST pull-down assay. CFLARL ubiquitination level was evaluated by proteasomal inhibitor treatment combined with HA-Ub transfection and WB assay. PRMT1 and PRMT5 genes were knocked down by siRNA technique. RESULTS: We show that PRMT5 up-regulated the protein levels of CFLARL by decreasing the ubiquitination and increasing its protein level. Additionally, PRMT1 down-regulated the protein level of CFLARL by increasing the ubiquitination and degradation. The overexpression of PRMT5 can inhibit the interaction between CFLARL and ITCH, which has been identified as an E3 ubiquitin ligase of CFLARL, while overexpressed PRMT1 enhances the interaction between CFLARL and ITCH. Furthermore, we verified that dead mutations of PRMT5 or PRMT1 have the same effects on CFLARL as the wild-type ones have, suggesting it is the physical interaction between CFLAR and PRMT1/5 that regulates CFLARL degradation other than its enzymatic activity. Finally, we showed that PRMT5 and PRMT1 could suppress or facilitate apoptosis induced by doxorubicin or pemetrexed by affecting CFLARL in NSCLC cells. CONCLUSIONS: PRMT5 and PRMT1 mediate the distinct effects on CFLARL degradation by regulating the binding of E3 ligase ITCH in NSCLC cells. This study identifies a cell death mechanism that is fine-tuned by PRMT1/5 that modulate CFLARL degradation in human NSCLC cells.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Neoplasias Pulmonares/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Repressoras/metabolismo , Transfecção
9.
J Exp Clin Cancer Res ; 38(1): 181, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046799

RESUMO

BACKGROUND: GMEB1 was originally identified via its interaction with GMEB2, which binds to the promoter region of the tyrosine aminotransferase (TAT) gene and modulates transactivation of the glucocorticoid receptor gene. In the cytosol, GMEB1 interacts with and inhibits CASP8, but the molecular mechanism is currently unknown. METHODS: Human non-small cell lung cancer cells and 293FT cells were used to investigate the function of GMEB1/USP40/CFLARL complex by WB, GST Pull-Down Assay, Immunoprecipitation, Immunofluorescence and Flow cytometry analysis. A549 cells overexpressing green fluorescent protein and GMEB1 shRNA were used for tumor xenograft using female athymic nu/nu 4-week-old mice. RESULTS: We found GMEB1 interacted with CFLARL (also known as c-FLIPL) in the cytosol and promoted its stability. USP40 targeted CFLARL for K48-linked de-ubiquitination. GMEB1 promoted the binding of USP40 to CFLARL. USP40 knockdown did not increase CFLARL protein level despite GMEB1 overexpression, suggesting GMEB1 promotes CFLARL stability via USP40. Additionally, GMEB1 inhibited the activation of pro-caspase 8 and apoptosis in non-small cell lung cancer (NSCLC) cell via CFLARL stabilization. Also, GMEB1 inhibited the formation of DISC upon TRAIL activation. CFLARL enhanced the binding of GMEB1 and CASP8. Downregulation of GMEB1 inhibited A549 xenograft tumor growth in vivo. CONCLUSIONS: Our findings show the de-ubiquitinase USP40 regulates the ubiquitination and degradation of CFLARL; and GMEB1 acts as a bridge protein for USP40 and CFLARL. Mechanistically, we found GMEB1 inhibits the activation of CASP8 by modulating ubiquitination and degradation of CFLARL. These findings suggest a novel strategy to induce apoptosis through CFLARL targeting in human NSCLC cells.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Fatores de Transcrição/genética , Ubiquitina Tiolesterase/genética , Células A549 , Animais , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 8/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA