RESUMO
BACKGROUND: Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia pipientis are less susceptible than wild-type A. aegypti to dengue virus infection. METHODS: We conducted a cluster-randomized trial involving releases of wMel-infected A. aegypti mosquitoes for the control of dengue in Yogyakarta, Indonesia. We randomly assigned 12 geographic clusters to receive deployments of wMel-infected A. aegypti (intervention clusters) and 12 clusters to receive no deployments (control clusters). All clusters practiced local mosquito-control measures as usual. A test-negative design was used to assess the efficacy of the intervention. Patients with acute undifferentiated fever who presented to local primary care clinics and were 3 to 45 years of age were recruited. Laboratory testing was used to identify participants who had virologically confirmed dengue (VCD) and those who were test-negative controls. The primary end point was symptomatic VCD of any severity caused by any dengue virus serotype. RESULTS: After successful introgression of wMel into the intervention clusters, 8144 participants were enrolled; 3721 lived in intervention clusters, and 4423 lived in control clusters. In the intention-to-treat analysis, VCD occurred in 67 of 2905 participants (2.3%) in the intervention clusters and in 318 of 3401 (9.4%) in the control clusters (aggregate odds ratio for VCD, 0.23; 95% confidence interval [CI], 0.15 to 0.35; P = 0.004). The protective efficacy of the intervention was 77.1% (95% CI, 65.3 to 84.9) and was similar against the four dengue virus serotypes. The incidence of hospitalization for VCD was lower among participants who lived in intervention clusters (13 of 2905 participants [0.4%]) than among those who lived in control clusters (102 of 3401 [3.0%]) (protective efficacy, 86.2%; 95% CI, 66.2 to 94.3). CONCLUSIONS: Introgression of wMel into A. aegypti populations was effective in reducing the incidence of symptomatic dengue and resulted in fewer hospitalizations for dengue among the participants. (Funded by the Tahija Foundation and others; AWED ClinicalTrials.gov number, NCT03055585; Indonesia Registry number, INA-A7OB6TW.).
Assuntos
Aedes/microbiologia , Controle de Doenças Transmissíveis/métodos , Dengue/transmissão , Mosquitos Vetores , Wolbachia , Adolescente , Adulto , Aedes/virologia , Animais , Criança , Pré-Escolar , Dengue/diagnóstico , Dengue/epidemiologia , Dengue/prevenção & controle , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Incidência , Indonésia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Adulto JovemRESUMO
Intervention trials of vector control methods often require community level randomization with appropriate inferential methods. For many interventions, the possibility of confounding due to the effects of health-care seeking behavior on disease ascertainment remains a concern. The test-negative design, a variant of the case-control method, was introduced to mitigate this issue in the assessment of the efficacy of influenza vaccination (measured at an individual level) on influenza infection. Here, we introduce a cluster-randomized test-negative design that includes randomization of the intervention at a group level. We propose several methods for estimation and inference regarding the relative risk (RR). The inferential methods considered are based on the randomization distribution induced by permuting intervention assignment across two sets of randomly selected clusters. The motivating example is a current study of the efficacy of randomized releases of Wolbachia-infected Aedes aegypti mosquitoes to reduce the incidence of dengue in Yogyakarta City, Indonesia. Estimation and inference techniques are assessed through a simulation study.
Assuntos
Bioestatística/métodos , Modelos Estatísticos , Distribuição Aleatória , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Aedes/microbiologia , Animais , Dengue/prevenção & controle , Humanos , Mosquitos Vetores , Wolbachia/patogenicidadeRESUMO
Background: Nontyphoidal Salmonella (NTS) organisms are a major cause of gastroenteritis and bacteremia, but little is known about maternally acquired immunity and natural exposure in infant populations residing in areas where NTS disease is highly endemic. Methods: We recruited 503 pregnant mothers and their infants (following delivery) from urban areas in Vietnam and followed infants until they were 1 year old. Exposure to the dominant NTS serovars, Salmonella enterica serovars Typhimurium and Enteritidis, were assessed using lipopolysaccharide (LPS) O antigen-specific antibodies. Antibody dynamics, the role of maternally acquired antibodies, and NTS seroincidence rates were modeled using multivariate linear risk factor models and generalized additive mixed-effect models. Results: Transplacental transfer of NTS LPS-specific maternal antibodies to infants was highly efficient. Waning of transplacentally acquired NTS LPS-specific antibodies at 4 months of age left infants susceptible to Salmonella organisms, after which they began to seroconvert. High seroincidences of S. Typhimurium and S. Enteritidis LPS were observed, and infants born with higher anti-LPS titers had greater plasma bactericidal activity and longer protection from seroconversion. Conclusions: Although Vietnamese infants have extensive exposure to NTS, maternally acquired antibodies appear to play a protective role against NTS infections during early infancy. These findings suggest that prenatal immunization may be an appropriate strategy to protect vulnerable infants from NTS disease.
Assuntos
Anticorpos Antibacterianos/imunologia , Imunidade Materno-Adquirida/imunologia , Imunidade , Infecções por Salmonella/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Lipopolissacarídeos/imunologia , Masculino , Análise Multivariada , Antígenos O , Fatores de Risco , Salmonella enteritidis , Salmonella typhimurium , Estudos Soroepidemiológicos , Sorogrupo , VietnãRESUMO
Cluster-randomized controlled trials are the gold standard for assessing efficacy of community-level interventions, such as vector-control strategies against dengue. We describe a novel cluster-randomized trial methodology with a test-negative design (CR-TND), which offers advantages over traditional approaches. This method uses outcome-based sampling of patients presenting with a syndrome consistent with the disease of interest, who are subsequently classified as test-positive cases or test-negative controls on the basis of diagnostic testing. We used simulations of a cluster trial to demonstrate validity of efficacy estimates under the test-negative approach. We demonstrated that, provided study arms are balanced for both test-negative and test-positive illness at baseline and that other test-negative design assumptions are met, the efficacy estimates closely match true efficacy. Analytical considerations for an odds ratio-based effect estimate arising from clustered data and potential approaches to analysis are also discussed briefly. We concluded that application of the test-negative design to certain cluster-randomized trials could increase their efficiency and ease of implementation.
Assuntos
Dengue/prevenção & controle , Projetos de Pesquisa , HumanosRESUMO
BACKGROUND: Dengue has been a notifiable disease in China since 1 September 1989. Cases have been reported each year during the past 25 years of dramatic socio-economic changes in China, and reached a historical high in 2014. This study describes the changing epidemiology of dengue in China during this period, to identify high-risk areas and seasons and to inform dengue prevention and control activities. METHODS: We describe the incidence and distribution of dengue in mainland China using notifiable surveillance data from 1990-2014, which includes classification of imported and indigenous cases from 2005-2014. RESULTS: From 1990-2014, 69,321 cases of dengue including 11 deaths were reported in mainland China, equating to 2.2 cases per one million residents. The highest number was recorded in 2014 (47,056 cases). The number of provinces affected has increased, from a median of three provinces per year (range: 1 to 5 provinces) during 1990-2000 to a median of 14.5 provinces per year (range: 5 to 26 provinces) during 2001-2014. During 2005-2014, imported cases were reported almost every month and 28 provinces (90.3%) were affected. However, 99.8% of indigenous cases occurred between July and November. The regions reporting indigenous cases have expanded from the coastal provinces of southern China and provinces adjacent to Southeast Asia to the central part of China. Dengue virus serotypes 1, 2, 3, and 4 were all detected from 2009-2014. CONCLUSIONS: In China, the area affected by dengue has expanded since 2000 and the incidence has increased steadily since 2012, for both imported and indigenous dengue. Surveillance and control strategies should be adjusted to account for these changes, and further research should explore the drivers of these trends.
Assuntos
Dengue/epidemiologia , Adulto , China/epidemiologia , Feminino , Humanos , Incidência , MasculinoRESUMO
BACKGROUND: Shigella spp. are one of the most common causes of paediatric dysentery globally, responsible for a substantial proportion of diarrhoeal disease morbidity and mortality, particularly in industrialising regions. Alarming levels of antimicrobial resistance are now reported in S. flexneri and S. sonnei, hampering treatment options. Little is known, however, about the burden of infection and disease due to Shigella spp. in the community. METHODS/DESIGN: In order to estimate the incidence of this bacterial infection in the community in Ho Chi Minh City, Vietnam we have designed a longitudinal cohort to follow up approximately 700 children aged 12-60 months for two years with active and passive surveillance for diarrhoeal disease. Children will be seen at 6 month intervals for health checks where blood and stool samples will be collected. Families will also be contacted every two weeks for information on presence of diarrhoea in the child. Upon report of a diarrhoeal disease episode, study nurses will either travel to the family home to perform an evaluation or the family will attend a study hospital at a reduced cost, where a stool sample will also be collected. Case report forms collected at this time will detail information regarding disease history, risk factors and presence of disease in the household.Outcomes will include (i) age-specific incidence of Shigella spp. and other agents of diarrhoeal disease in the community, (ii) risk factors for identified aetiologies, (iii) rates of seroconversion to a host of gastrointestinal pathogens in the first few years of life. Further work regarding the longitudinal immune response to a variety of Shigella antigens, host genetics and candidate vaccine/diagnostic proteins will also be conducted. DISCUSSION: This is the largest longitudinal cohort with active surveillance designed specifically to investigate Shigella infection and disease. The study is strengthened by the active surveillance component, which will likely capture a substantial proportion of episodes not normally identified through passive or hospital-based surveillance. It is hoped that information from this study will aid in the design and implementation of Shigella vaccine trials in the future.
Assuntos
Disenteria Bacilar/epidemiologia , Projetos de Pesquisa , Fatores Etários , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Incidência , Lactente , Masculino , Fatores de Risco , Shigella , Vietnã/epidemiologiaRESUMO
BACKGROUND: Dengue is the most important arboviral disease globally and poses ongoing challenges for control including in non-endemic countries with competent mosquito vectors at risk of local transmission through imported cases. We examined recent epidemiological trends in imported and locally acquired dengue in Australia, where the Wolbachia mosquito population replacement method was implemented throughout dengue-prone areas of northern Queensland between 2011 and 2019. METHODS: We analysed dengue cases reported to the Australian National Notifiable Disease Surveillance System between January 2012 and December 2022, and Australian traveller movement data. RESULTS: Between 2012 and 2022, 13 343 dengue cases were reported in Australia (median 1466 annual cases); 12 568 cases (94.2%) were imported, 584 (4.4%) were locally acquired and 191 (1.4%) had no origin recorded. Locally acquired cases decreased from a peak in 2013 (n = 236) to zero in 2021-22. Annual incidence of imported dengue ranged from 8.29/100 000 (n = 917 cases) to 22.10/100 000 (n = 2203) annual traveller movements between 2012 and 2019, decreased in 2020 (6.74/100 000 traveller movements; n = 191) and 2021 (3.32/100 000 traveller movements; n = 10) during COVID-19-related border closures, then rose to 34.79/100 000 traveller movements (n = 504) in 2022. Imported cases were primarily acquired in Southeast Asia (n = 9323; 74%), Southern and Central Asia (n = 1555; 12%) and Oceania (n = 1341; 11%). Indonesia (n = 5778; 46%) and Thailand (n = 1483; 12%) were top acquisition countries. DENV-2 (n = 2147; 42%) and DENV-1 (n = 1526; 30%) were predominant serotypes. CONCLUSION: Our analysis highlights Australia's successful control of locally acquired dengue with Wolbachia. Imported dengue trends reflect both Australian travel destinations and patterns and local epidemiology in endemic countries.
Assuntos
Infecções por Arbovirus , Culicidae , Dengue , Animais , Humanos , Austrália/epidemiologia , Infecções por Arbovirus/epidemiologia , Queensland/epidemiologia , Dengue/epidemiologiaRESUMO
The intention-to-treat (ITT) analysis of the Applying Wolbachia to Eliminate Dengue (AWED) trial estimated a protective efficacy of 77.1% for participants resident in areas randomised to receive releases of wMel-infected Aedes aegypti mosquitoes, an emerging dengue preventive intervention. The limiting assumptions of ITT analyses in cluster randomised trials and the mobility of mosquitoes and humans across cluster boundaries indicate the primary analysis is likely to underestimate the full public health benefit. Using spatiotemporally-resolved data on the distribution of Wolbachia mosquitoes and on the mobility of AWED participants (n = 6306), we perform complier-restricted and per-protocol re-examinations of the efficacy of the Wolbachia intervention. Increased intervention efficacy was estimated in all analyses by the refined exposure measures. The complier-restricted analysis returned an estimated efficacy of 80.7% (95% CI 65.9, 89.0) and the per-protocol analysis estimated 82.7% (71.7, 88.4) efficacy when comparing participants with an estimated wMel exposure of ≥ 80% compared to those with <20%. These reanalyses demonstrate how human and mosquito movement can lead to underestimation of intervention effects in trials of vector interventions and indicate that the protective efficacy of Wolbachia is even higher than reported in the primary trial results.
Assuntos
Aedes , Dengue , Wolbachia , Humanos , Aedes/microbiologia , Animais , Dengue/prevenção & controle , Dengue/transmissão , Mosquitos Vetores/microbiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Análise por Conglomerados , Controle de Mosquitos/métodos , FemininoRESUMO
Pacific Island countries have experienced periodic dengue, chikungunya and Zika outbreaks for decades. The prevention and control of these mosquito-borne diseases rely heavily on control of Aedes aegypti mosquitoes, which in most settings are the primary vector. Introgression of the intracellular bacterium Wolbachia pipientis (wMel strain) into Ae. aegypti populations reduces their vector competence and consequently lowers dengue incidence in the human population. Here we describe successful area-wide deployments of wMel-infected Ae. aegypti in Suva, Lautoka, Nadi (Fiji), Port Vila (Vanuatu) and South Tarawa (Kiribati). With community support, weekly releases of wMel-infected Ae. aegypti mosquitoes for between 2 to 5 months resulted in wMel introgression in nearly all locations. Long term monitoring confirmed a high, self-sustaining prevalence of wMel infecting mosquitoes in almost all deployment areas. Measurement of public health outcomes were disrupted by the Covid19 pandemic but are expected to emerge in the coming years.
Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Humanos , Aedes/genética , Aedes/microbiologia , Mosquitos Vetores/genética , Mosquitos Vetores/microbiologia , Wolbachia/genética , Fiji/epidemiologia , VanuatuRESUMO
An improved understanding of heterogeneities in dengue virus transmission might provide insights into biological and ecologic drivers and facilitate predictions of the magnitude, timing, and location of future dengue epidemics. To investigate dengue dynamics in urban Ho Chi Minh City and neighboring rural provinces in Vietnam, we analyzed a 10-year monthly time series of dengue surveillance data from southern Vietnam. The per capita incidence of dengue was lower in Ho Chi Minh City than in most rural provinces; annual epidemics occurred 1-3 months later in Ho Chi Minh City than elsewhere. The timing and the magnitude of annual epidemics were significantly more correlated in nearby districts than in remote districts, suggesting that local biological and ecologic drivers operate at a scale of 50-100 km. Dengue incidence during the dry season accounted for 63% of variability in epidemic magnitude. These findings can aid the targeting of vector-control interventions and the planning for dengue vaccine implementation.
Assuntos
Vírus da Dengue , Dengue/epidemiologia , Epidemias , Geografia , Humanos , Incidência , Periodicidade , Vigilância em Saúde Pública , Estações do Ano , Análise Espaço-Temporal , Vietnã/epidemiologiaRESUMO
BACKGROUND: In Ho Chi Minh City, Vietnam, more than one-third of admissions to the two paediatric hospitals are attributable to four infectious syndromes: dengue, diarrhoeal disease, acute respiratory infection, and hand, foot and mouth disease. We have established a large prospective birth cohort study to investigate individual, environmental, virological, and immunological determinants of infection and disease in infants. Specific research questions are focused on the role of maternal antibody in protection against infection in infancy, and the adaptive immune response to vaccination and natural infection. This paper presents the cohort design, methods, and baseline characteristics of the participants enrolled in the first two years. METHODS/DESIGN: Women are enrolled prior to delivery at one hospital in each of two catchment areas: an urban district in central HCMC, and a mixed urban/rural district in the Mekong Delta 150 km southwest of HCMC. Infants are enrolled within 3 days of birth, and maternal and cord blood samples are collected. Routine blood samples and data on growth, health status and vaccinations are collected from infants at scheduled visits at 4, 9 and 12 months. Clinical data and specimens are collected from infants presenting at a study clinic, or admitted to hospital, with any of the the four infectious syndromes of interest. DISCUSSION: In four years since since the study began in July 2009, >6400 infants have been enrolled, and enrolment is ongoing. Attrition is low: 84% of participants have completed the full 12-month follow-up period. Baseline characteristics of the first 4300 enrollees are presented here. We have demonstrated the feasibility of establishing a large prospective study of infectious diseases in infancy in a resource-limited setting, with minimal loss to follow-up. Our linked socio-demographic, clinical and laboratory data will help elucidate the viral aetiology and epidemiology of common infectious diseases of infancy, and can inform the implemention of existing and future vaccines. This study furthermore provides a platform to which additional endpoints could be added in the future.
Assuntos
Viroses/epidemiologia , Adulto , Serviços de Saúde da Criança , Estudos de Coortes , Dengue/epidemiologia , Dengue/imunologia , Dengue/prevenção & controle , Feminino , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Lactente , Recém-Nascido , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Masculino , Estudos Prospectivos , Projetos de Pesquisa , População Rural , População Urbana , Vietnã/epidemiologia , Viroses/imunologia , Viroses/prevenção & controleRESUMO
INTRODUCTION: Field trials and modelling studies suggest that elimination of dengue transmission may be possible through widespread release of Aedes aegypti mosquitoes infected with the insect bacterium Wolbachia pipientis (wMel strain), in conjunction with routine dengue control activities. This study aimed to develop a modelling framework to guide planning for the potential elimination of locally acquired dengue in Yogyakarta, a city of almost 400 000 people in Java, Indonesia. METHODS: A scenario-tree modelling approach was used to estimate the sensitivity of the dengue surveillance system (including routine hospital-based reporting and primary-care-based enhanced surveillance), and time required to demonstrate elimination of locally acquired dengue in Yogyakarta city, assuming the detected incidence of dengue decreases to zero in the future. Age and gender were included as risk factors for dengue, and detection nodes included the probability of seeking care, probability of sample collection and testing, diagnostic test sensitivity and probability of case notification. Parameter distributions were derived from health system data or estimated by expert opinion. Alternative simulations were defined based on changes to key parameter values, separately and in combination. RESULTS: For the default simulation, median surveillance system sensitivity was 0.131 (95% PI 0.111 to 0.152) per month. Median confidence in dengue elimination reached 80% after a minimum of 13 months of zero detected dengue cases and 90% confidence after 25 months, across different scenarios. The alternative simulations investigated produced relatively small changes in median system sensitivity and time to elimination. CONCLUSION: This study suggests that with a combination of hospital-based surveillance and enhanced clinic-based surveillance for dengue, an acceptable level of confidence (80% probability) in the elimination of locally acquired dengue can be reached within 2 years. Increasing the surveillance system sensitivity could shorten the time to first ascertainment of elimination of dengue and increase the level of confidence in elimination.
Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Indonésia/epidemiologia , Aedes/microbiologia , Incidência , Dengue/epidemiologia , Dengue/prevenção & controleRESUMO
INTRODUCTION: Dengue is a major public health challenge and a growing problem due to climate change. The release of Aedes aegypti mosquitoes infected with the intracellular bacterium Wolbachia is a novel form of vector control against dengue. However, there remains a need to evaluate the benefits of such an intervention at a large scale. In this paper, we evaluate the potential economic impact and cost-effectiveness of scaled Wolbachia deployments as a form of dengue control in Vietnam-targeted at the highest burden urban areas. METHODS: Ten settings within Vietnam were identified as priority locations for potential future Wolbachia deployments (using a population replacement strategy). The effectiveness of Wolbachia deployments in reducing the incidence of symptomatic dengue cases was assumed to be 75%. We assumed that the intervention would maintain this effectiveness for at least 20 years (but tested this assumption in the sensitivity analysis). A cost-utility analysis and cost-benefit analysis were conducted. RESULTS: From the health sector perspective, the Wolbachia intervention was projected to cost US$420 per disability-adjusted life year (DALY) averted. From the societal perspective, the overall cost-effectiveness ratio was negative, i.e. the economic benefits outweighed the costs. These results are contingent on the long-term effectiveness of Wolbachia releases being sustained for 20 years. However, the intervention was still classed as cost-effective across the majority of the settings when assuming only 10 years of benefits. CONCLUSION: Overall, we found that targeting high burden cities with Wolbachia deployments would be a cost-effective intervention in Vietnam and generate notable broader benefits besides health gains.
Assuntos
Aedes , Dengue , Wolbachia , Animais , Humanos , Análise Custo-Benefício , Dengue/epidemiologia , Dengue/prevenção & controle , Vietnã/epidemiologia , Mosquitos Vetores , Aedes/microbiologiaRESUMO
BACKGROUND: Releases of Wolbachia (wMel)-infected Aedes aegypti mosquitoes significantly reduced the incidence of virologically confirmed dengue in a previous cluster randomised trial in Yogyakarta City, Indonesia. Following the trial, wMel releases were extended to the untreated control areas, to achieve city-wide coverage of Wolbachia. OBJECTIVE: In this predefined analysis, we evaluated the impact of the wMel deployments in Yogyakarta on dengue hemorrhagic fever (DHF) case notifications and on the frequency of perifocal insecticide spraying by public health teams. METHODS: Monthly counts of DHF cases notified to the Yogyakarta District Health Office between January 2006 and May 2022 were modelled as a function of time-varying local wMel treatment status (fully- and partially-treated vs untreated, and by quintile of wMel prevalence). The frequency of insecticide fogging in wMel-treated and untreated areas was analysed using negative binomial regression. RESULTS: Notified DHF incidence was 83% lower in fully treated vs untreated periods (IRR 0.17 [95% CI 0.14, 0.20]), and 78% lower in areas with 80-100% wMel prevalence compared to areas with 0-20% wMel (IRR 0.23 [0.17, 0.30]). A similar intervention effect was observed at 60-80% wMel prevalence as at 80-100% prevalence (76% vs 78% efficacy, respectively). Pre-intervention, insecticide fogging occurred at similar frequencies in areas later randomised to wMel-treated and untreated arms of the trial. After wMel deployment, fogging occurred significantly less frequently in treated areas (IRR 0.17 [0.10, 0.30]). CONCLUSIONS: Deployments of wMel-infected Aedes aegypti mosquitoes resulted in an 83% reduction in the application of perifocal insecticide spraying, consistent with lower dengue case notifications in wMel-treated areas. These results show that the Wolbachia intervention effect demonstrated previously in a cluster randomised trial was also measurable from routine surveillance data.
Assuntos
Aedes , Vírus da Dengue , Dengue , Inseticidas , Wolbachia , Animais , Humanos , Dengue/epidemiologia , Dengue/prevenção & controleRESUMO
BACKGROUND: The introduction of Wolbachia (wMel strain) into Aedes aegypti mosquitoes reduces their capacity to transmit dengue and other arboviruses. Randomised and non-randomised studies in multiple countries have shown significant reductions in dengue incidence following field releases of wMel-infected Ae. aegypti. We report the public health outcomes from phased, large-scale releases of wMel-Ae. aegypti mosquitoes throughout three contiguous cities in the Aburrá Valley, Colombia. METHODOLOGY/PRINCIPAL FINDINGS: Following pilot releases in 2015-2016, staged city-wide wMel-Ae. aegypti deployments were undertaken in the cities of Bello, Medellín and Itagüí (3.3 million people) between October 2016 and April 2022. The impact of the Wolbachia intervention on dengue incidence was evaluated in two parallel studies. A quasi-experimental study using interrupted time series analysis showed notified dengue case incidence was reduced by 95% in Bello and Medellín and 97% in Itagüí, following establishment of wMel at ≥60% prevalence, compared to the pre-intervention period and after adjusting for seasonal trends. A concurrent clinic-based case-control study with a test-negative design was unable to attain the target sample size of 63 enrolled virologically-confirmed dengue (VCD) cases between May 2019 and December 2021, consistent with low dengue incidence throughout the Aburrá Valley following wMel deployments. Nevertheless, VCD incidence was 45% lower (OR 0.55 [95% CI 0.25, 1.17]) and combined VCD/presumptive dengue incidence was 47% lower (OR 0.53 [95% CI 0.30, 0.93]) among participants resident in wMel-treated versus untreated neighbourhoods. CONCLUSIONS/SIGNIFICANCE: Stable introduction of wMel into local Ae. aegypti populations was associated with a significant and sustained reduction in dengue incidence across three Colombian cities. These results from the largest contiguous Wolbachia releases to-date demonstrate the real-world effectiveness of the method across large urban populations and, alongside previously published results, support the reproducibility of this effectiveness across different ecological settings. TRIAL REGISTRATION: NCT03631719.
Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Humanos , Colômbia/epidemiologia , Cidades/epidemiologia , Incidência , Análise de Séries Temporais Interrompida , Estudos de Casos e Controles , Reprodutibilidade dos Testes , Controle Biológico de Vetores/métodos , Dengue/epidemiologia , Dengue/prevenção & controle , Mosquitos VetoresRESUMO
BACKGROUND: The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and has been shown to reduce the transmission of dengue and other Aedes-borne viruses. Here we report the entomological results from phased, large-scale releases of Wolbachia infected Ae. aegypti mosquitoes throughout three contiguous cities located in the Aburrá Valley, Colombia. METHODOLOGY/PRINCIPAL FINDINGS: Local wMel Wolbachia-infected Ae. aegypti mosquitoes were generated and then released in an initial release pilot area in 2015-2016, which resulted in the establishment of Wolbachia in the local mosquito populations. Subsequent large-scale releases, mainly involving vehicle-based releases of adult mosquitoes along publicly accessible roads and streets, were undertaken across 29 comunas throughout Bello, Medellín and Itagüí Colombia between 2017-2022. In 9 comunas these were supplemented by egg releases that were undertaken by staff or community members. By the most recent monitoring, Wolbachia was found to be stable and established at consistent levels in local mosquito populations (>60% prevalence) in the majority (67%) of areas. CONCLUSION: These results, from the largest contiguous releases of wMel Wolbachia mosquitoes to date, highlight the operational feasibility of implementing the method in large urban settings. Based on results from previous studies, we expect that Wolbachia establishment will be sustained long term. Ongoing monitoring will confirm Wolbachia persistence in local mosquito populations and track its establishment in the remaining areas.
Assuntos
Aedes , Wolbachia , Animais , Humanos , Cidades , Colômbia , Meio Ambiente , Mosquitos VetoresRESUMO
BACKGROUND: Introgression of genetic material from species of the insect bacteria Wolbachia into populations of Aedes aegypti mosquitoes has been shown in randomised and non-randomised trials to reduce the incidence of dengue; however, evidence for the real-world effectiveness of large-scale deployments of Wolbachia-infected mosquitoes for arboviral disease control in endemic settings is still scarce. A large Wolbachia (wMel strain) release programme was implemented in 2017 in Rio de Janeiro, Brazil. We aimed to assess the effect of this programme on the incidence of dengue and chikungunya in the city. METHODS: 67 million wMel-infected mosquitoes were released across 28 489 locations over an area of 86·8 km2 in Rio de Janeiro between Aug 29, 2017 and Dec 27, 2019. Following releases, mosquitoes were trapped and the presence of wMel was recorded. In this spatiotemporal modelling study, we assessed the effect of the release programme on the incidence of dengue and chikungunya. We used spatiotemporally explicit mathematical models applied to geocoded dengue cases (N=283 270) from 2010 to 2019 and chikungunya cases (N=57 705) from 2016 to 2019. FINDINGS: On average, 32% of mosquitoes collected from the release zones between 1 month and 29 months after the initial release tested positive for wMel. Reduced wMel introgression occurred in locations and seasonal periods in which cases of dengue and chikungunya were historically high, with a decrease to 25% of mosquitoes testing positive for wMel during months in which disease incidence was at its highest. Despite incomplete introgression, we found that the releases were associated with a 38% (95% CI 32-44) reduction in the incidence of dengue and a 10% (4-16) reduction in the incidence of chikungunya. INTERPRETATION: Stable establishment of wMel in the geographically diverse, urban setting of Rio de Janeiro seems to be more complicated than has been observed elsewhere. However, even intermediate levels of wMel seem to reduce the incidence of disease caused by two arboviruses. These findings will help to guide future release programmes. FUNDING: Bill & Melinda Gates Foundation and the European Research Council.
Assuntos
Aedes , Febre de Chikungunya , Vírus da Dengue , Dengue , Wolbachia , Humanos , Animais , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/prevenção & controle , Incidência , Brasil/epidemiologia , Dengue/epidemiologia , Dengue/prevenção & controle , Mosquitos VetoresRESUMO
Dengue exhibits focal clustering in households and neighborhoods, driven by local mosquito population dynamics, human population immunity, and fine scale human and mosquito movement. We tested the hypothesis that spatiotemporal clustering of homotypic dengue cases is disrupted by introduction of the arbovirus-blocking bacterium Wolbachia (wMel-strain) into the Aedes aegypti mosquito population. We analysed 318 serotyped and geolocated dengue cases (and 5921 test-negative controls) from a randomized controlled trial in Yogyakarta, Indonesia of wMel deployments. We find evidence of spatial clustering up to 300 m among the 265 dengue cases (3083 controls) in the untreated trial arm. Participant pairs enrolled within 30 days and 50 m had a 4.7-fold increase (compared to 95% CI on permutation-based null distribution: 0.1, 1.2) in the odds of being homotypic (i.e. potentially transmission-related) as compared to pairs occurring at any distance. In contrast, we find no evidence of spatiotemporal clustering among the 53 dengue cases (2838 controls) resident in the wMel-treated arm. Introgression of wMel Wolbachia into Aedes aegypti mosquito populations interrupts focal dengue virus transmission leading to reduced case incidence; the true intervention effect may be greater than the 77% efficacy measured in the primary analysis of the Yogyakarta trial.
Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Análise por Conglomerados , Vírus da Dengue/genética , Humanos , Indonésia/epidemiologia , Controle Biológico de Vetores , Wolbachia/genéticaRESUMO
The Applying Wolbachia to Eliminate Dengue (AWED) trial was a parallel cluster randomised trial that demonstrated Wolbachia (wMel) introgression into Ae. aegypti populations reduced dengue incidence. In this predefined substudy, we compared between treatment arms, the relative abundance of Ae. aegypti and Ae. albopictus before, during and after wMel-introgression. Between March 2015 and March 2020, 60,084 BG trap collections yielded 478,254 Ae. aegypti and 17,623 Ae. albopictus. Between treatment arms there was no measurable difference in Ae. aegypti relative abundance before or after wMel-deployments, with a count ratio of 0.96 (95% CI 0.76, 1.21) and 1.00 (95% CI 0.85, 1.17) respectively. More Ae. aegypti were caught per trap per week in the wMel-intervention arm compared to the control arm during wMel deployments (count ratio 1.23 (95% CI 1.03, 1.46)). Between treatment arms there was no measurable difference in the Ae. albopictus population size before, during or after wMel-deployment (overall count ratio 1.10 (95% CI 0.89, 1.35)). We also compared insecticide resistance phenotypes of Ae. aegypti in the first and second years after wMel-deployments. Ae. aegypti field populations from wMel-treated and untreated arms were similarly resistant to malathion (0.8%), permethrin (1.25%) and cyfluthrin (0.15%) in year 1 and year 2 of the trial. In summary, we found no between-arm differences in the relative abundance of Ae. aegypti or Ae. albopictus prior to or after wMel introgression, and no between-arm difference in Ae. aegypti insecticide resistance phenotypes. These data suggest neither Aedes abundance, nor insecticide resistance, confounded the epidemiological outcomes of the AWED trial.