Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453153

RESUMO

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Assuntos
Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Contagem de Colônia Microbiana , Microbioma Gastrointestinal/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade , Camundongos Endogâmicos C57BL , Sulfetos/metabolismo , Taurina/farmacologia
2.
Immunity ; 47(6): 1154-1168.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29221731

RESUMO

White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory.


Assuntos
Tecido Adiposo Branco/transplante , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Toxoplasmose/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Tecido Adiposo Branco/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/parasitologia , Expressão Gênica , Genes Reporter , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Metabolismo dos Lipídeos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sobrevida , Transplante de Tecidos , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/mortalidade , Toxoplasmose/parasitologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologia , Infecções por Yersinia pseudotuberculosis/mortalidade
3.
Proc Natl Acad Sci U S A ; 120(4): e2214484120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652484

RESUMO

The microbiota performs multiple functions vital to host fitness, including defense against pathogens and adaptation to dietary changes. Yet, how environmental challenges shape microbiota resilience to nutrient fluctuation remains largely unexplored. Here, we show that transient gut infection can optimize host metabolism toward the usage of carbohydrates. Following acute infection and clearance of the pathogen, mice gained more weight as a result of white adipose tissue expansion. Concomitantly, previously infected mice exhibited enhanced carbohydrate (glucose) disposal and insulin sensitivity. This metabolic remodeling depended on alterations to the gut microbiota, with infection-elicited Betaproteobacteria being sufficient to enhance host carbohydrate metabolism. Further, infection-induced metabolic alteration protected mice against stunting in the context of limited nutrient availability. Together, these results propose that alterations to the microbiota imposed by acute infection may enhance host fitness and survival in the face of nutrient restriction, a phenomenon that may be adaptive in settings where both infection burden and food precarity are prevalent.


Assuntos
Resistência à Insulina , Microbiota , Animais , Camundongos , Adaptação ao Hospedeiro , Obesidade/metabolismo , Nutrientes
4.
J Immunol ; 207(2): 626-639, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34261666

RESUMO

Sepsis is a complex infectious syndrome in which neutrophil participation is crucial for patient survival. Neutrophils quickly sense and eliminate the pathogen by using different effector mechanisms controlled by metabolic processes. The mammalian target of rapamycin (mTOR) pathway is an important route for metabolic regulation, and its role in neutrophil metabolism has not been fully understood yet, especially the importance of mTOR complex 2 (mTORC2) in the neutrophil effector functions. In this study, we observed that the loss of Rictor (mTORC2 scaffold protein) in primary mouse-derived neutrophils affects their chemotaxis by fMLF and their microbial killing capacity, but not the phagocytic capacity. We found that the microbicidal capacity was impaired in Rictor-deleted neutrophils because of an improper fusion of granules, reducing the hypochlorous acid production. The loss of Rictor also led to metabolic alterations in isolated neutrophils, increasing aerobic glycolysis. Finally, myeloid-Rictor-deleted mice (LysMRic Δ/Δ) also showed an impairment of the microbicidal capacity, increasing the bacterial burden in the Escherichia coli sepsis model. Overall, our results highlight the importance of proper mTORC2 activation for neutrophil effector functions and metabolism during sepsis.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neutrófilos/metabolismo , Sepse/metabolismo , Sepse/microbiologia , Animais , Quimiotaxia/fisiologia , Escherichia coli/metabolismo , Feminino , Glicólise/fisiologia , Humanos , Ácido Hipocloroso/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Transdução de Sinais/fisiologia
5.
FASEB J ; 33(11): 11894-11908, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31366236

RESUMO

Butyrate is a short-chain fatty acid derived from the metabolism of indigestible carbohydrates by the gut microbiota. Butyrate contributes to gut homeostasis, but it may also control inflammatory responses and host physiology in other tissues. Butyrate inhibits histone deacetylases, thereby affecting gene transcription, and also signals through the metabolite-sensing G protein receptor (GPR)109a. We produced an mAb to mouse GPR109a and found high expression on podocytes in the kidney. Wild-type and Gpr109a-/- mice were induced to develop nephropathy by a single injection of Adriamycin and treated with sodium butyrate or high butyrate-releasing high-amylose maize starch diet. Butyrate improved proteinuria by preserving podocyte at glomerular basement membrane and attenuated glomerulosclerosis and tissue inflammation. This protective phenotype was associated with increased podocyte-related proteins and a normalized pattern of acetylation and methylation at promoter sites of genes essential for podocyte function. We found that GPR109a is expressed by podocytes, and the use of Gpr109a-/- mice showed that the protective effects of butyrate depended on GPR109a expression. A prebiotic diet that releases high amounts of butyrate also proved highly effective for protection against kidney disease. Butyrate and GPR109a play a role in the pathogenesis of kidney disease and provide one of the important molecular connections between diet, the gut microbiota, and kidney disease.-Felizardo, R. J. F., de Almeida, D. C., Pereira, R. L., Watanabe, I. K. M., Doimo, N. T. S., Ribeiro, W. R., Cenedeze, M. A., Hiyane, M. I., Amano, M. T., Braga, T. T., Ferreira, C. M., Parmigiani, R. B., Andrade-Oliveira, V., Volpini, R. A., Vinolo, M. A. R., Mariño, E., Robert, R., Mackay, C. R., Camara, N. O. S. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms.


Assuntos
Butiratos/farmacologia , Epigênese Genética , Microbioma Gastrointestinal/fisiologia , Nefropatias/prevenção & controle , Proteinúria/prevenção & controle , Receptores Acoplados a Proteínas G/genética , Animais , Bactérias/metabolismo , Butiratos/metabolismo , Células Cultivadas , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
6.
Clin Sci (Lond) ; 133(17): 1901-1916, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31471462

RESUMO

NLRP3 inflammasome [NLR (nucleotide-binding domain, leucine-rich repeat containing protein) Pyrin-domain-containing 3 ] functions as an innate sensor of several PAMPs and DAMPs (pathogen- and damage-associated molecular patterns). It has been also reported as a transcription factor related to Th2 pattern, although its role in the adaptive immunity has been controversial, mainly because the studies were performed using gene deletion approaches. In the present study, we have investigated the NLRP3 gain-of-function in the context of encephalomyelitis autoimmune disease (EAE), considered to be a Th1- and Th17-mediated disease. We took advantage of an animal model with NLRP3 gain-of-function exclusively to T CD4+ lymphocytes (CD4CreNLRP3fl/fl). These mice presented reduced clinical score, accompanied by less infiltrating T CD4+ cells expressing both IFN-γ and IL-17 at the central nervous system (CNS) during the peak of the disease. However, besides NLRP3 gain-of-function in lymphocytes, these mice lack NLRP3 expression in non-T CD4+ cells. Therefore, in order to circumvent this deficiency, we transferred naive CD4+ T cells from WT, NLRP3-/- or CD4CreNLRP3fl/fl into Rag-1-/- mice and immunized them with MOG35-55 Likewise, the animals repopulated with CD4CreNLRP3fl/fl T CD4+ cells presented reduced clinical score and decreased IFN-γ production at the peak of the disease. Additionally, primary effector CD4+ T cells derived from these mice presented reduced glycolytic profile, a metabolic profile compatible with Th2 cells. Finally, naive CD4+ T cells from CD4CreNLRP3fl/fl mice under a Th2-related cytokine milieu cocktail exhibited in vitro an increased IL-4 and IL-13 production. Conversely, naive CD4+ T cells from CD4CreNLRP3fl/fl mice under Th1 differentiation produced less IFN-γ and T-bet. Altogether, our data evidence that the NLRP3 gain-of-function promotes a Th2-related response, a pathway that could be better explored in the treatment of multiple sclerosis.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
7.
Inflammopharmacology ; 26(2): 491-504, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28779430

RESUMO

Pulmonary fibrosis is a result of an abnormal wound healing in lung tissue triggered by an excessive accumulation of extracellular matrix proteins, loss of tissue elasticity, and debit of ventilatory function. NKT cells are a major source of Th1 and Th2 cytokines and may be crucial in the polarization of M1/M2 macrophages in pulmonary fibrogenesis. Although there appears to be constant scientific progress in that field, pulmonary fibrosis still exhibits no current cure. From these facts, we hypothesized that NKT cells could influence the development of pulmonary fibrosis via modulation of macrophage activation. Wild type (WT) and NKT type I cell-deficient mice (Jα18-/-) were subjected to the protocol of bleomycin-induced pulmonary fibrosis with or without treatment with NKT cell agonists α-galactosylceramide and sulfatide. The participation of different cell populations, collagen deposition, and protein levels of different cytokines involved in inflammation and fibrosis was evaluated. The results indicate a benign role of NKT cells in Jα18-/- mice and in wild-type α-galactosylceramide-sulfatide-treated groups. These animals presented lower levels of collagen deposition, fibrogenic molecules such as TGF-ß and vimentin and improved survival rates. In contrast, WT mice developed a Th2-driven response augmenting IL-4, 5, and 13 protein synthesis and increased collagen deposition. Furthermore, the arginase-1 metabolic pathway was downregulated in wild-type NKT-activated and knockout mice indicating lower activity of M2 macrophages in lung tissue. Hence, our data suggest that NKT cells play a protective role in this experimental model by down modulating the Th2 milieu, inhibiting M2 polarization and finally preventing fibrosis.


Assuntos
Bleomicina/farmacologia , Macrófagos/fisiologia , Células T Matadoras Naturais/fisiologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/fisiopatologia , Animais , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Galactosilceramidas/farmacologia , Inflamação/metabolismo , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Fenótipo , Fibrose Pulmonar/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vimentina/metabolismo
8.
Inflammopharmacology ; 26(1): 251-260, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29063489

RESUMO

Inflammatory bowel diseases (IBDs) affect millions of people worldwide and their frequencies in developed countries have increased since the twentieth century. In this context, there is an intensive search for therapies that modulate inflammation and provide tissue regeneration in IBDs. Recently, the immunomodulatory activity of adipose tissue-derived mesenchymal stromal cells (ADMSCs) has been demonstrated to play an important role on several immune cells in different conditions of inflammatory and autoimmune diseases. In this study, we explored the immunomodulatory potential of ADMSC in a classical model of DSS-induced colitis. First, we found that treatment of mice with ADMSC ameliorated the severity of DSS-induced colitis, reducing colitis pathological score and preventing colon shortening. Moreover, a prominent reduction of pro-inflammatory cytokines levels (i.e., IFN-γ, TNF-α, IL-6 and MCP-1) was observed in the colon of animals treated with ADMSC. We also observed a significant reduction in the frequencies of macrophages (F4/80+CD11b+) and dendritic cells (CD11c+CD103+) in the intestinal lamina propria of ADMSC-treated mice. Finally, we detected the up-regulation of immunoregulatory-associated molecules in intestine of mice treated with ADMSCs (i.e., elevated arginase-1 and IL-10). Thus, this present study demonstrated that ADMSC modulates the overall gut inflammation (cell activation and recruitment) in experimental colitis, providing support to the further development of new strategies in the treatment of intestinal diseases.


Assuntos
Colite/metabolismo , Colite/patologia , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Wound Repair Regen ; 24(6): 981-993, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27684945

RESUMO

Oxidative stress aggravates several long-term complications in diabetes mellitus. We evaluated the effectiveness of the oral administration of antioxidants (vitamins E and C, 40 and 100 mg/kg b.w., respectively) on skin wound healing acceleration in alloxan-induced diabetic mice. Mice were wounded 30 days after the induction of diabetes. Antioxidants were effective in preventing oxidative stress, as assessed by TBARS. The enzymes catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase were increased in diabetics on the 3rd day post-wounding; catalase and glutathione peroxidase remained still augmented in diabetics after 14th day postwounding, and the treatment with vitamins restored their activities to control. After 3 days, diabetic mice showed lower infiltration of inflammatory cells (including CD11b+ and Ly6G+ cells) and reduced levels of KC, TNF-α, IL-1ß, and IL-12 p40 when compared with control mice. The treatment restored cytokine levels. After 14 days, diabetic mice showed late wound closure, persistent inflammation and delayed reepithelialization, accompanied by an increase in MIG+ /CD206- macrophages whereas CD206+ /MIG- macrophages were decreased. Cytokines IL-12p40, TNF-α, IL-1ß, and KC were increased and normal levels were restored after treatment with antioxidants. These results suggest that oxidative stress plays a major role in diabetic wound healing impairment and the oral administration of antioxidants improves healing by modulating inflammation and the antioxidant system with no effect on glycemia.


Assuntos
Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/patologia , Inflamação/patologia , Estresse Oxidativo/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/patologia , Administração Oral , Animais , Glicemia/metabolismo , Catalase/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Camundongos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
10.
J Am Soc Nephrol ; 26(8): 1877-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25589612

RESUMO

Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.


Assuntos
Injúria Renal Aguda/prevenção & controle , Ácidos Graxos Voláteis/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Animais , Bifidobacterium , Linhagem Celular , Células Dendríticas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inflamação/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Probióticos/uso terapêutico , Traumatismo por Reperfusão/metabolismo
11.
Eur J Immunol ; 44(3): 794-806, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24271843

RESUMO

Leptin is an adipose-secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1-cell polarization and inhibit Th2-cell responses. Additionally, leptin induces Th17-cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg-cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL-12, TNF-α, and IL-6, (iii) increased DC production of TGF-ß, and (iv) limited the capacity of DCs to induce syngeneic CD4(+) T-cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin-free conditions induced Treg or TH 17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs.


Assuntos
Diferenciação Celular/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Leptina/deficiência , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Animais , Células Dendríticas/imunologia , Imunofenotipagem , Leptina/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th17/citologia , Células Th17/imunologia
12.
Lab Invest ; 94(4): 455-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24492283

RESUMO

Platelet-activating factor (PAF) is a lipid mediator with important pro-inflammatory effects, being synthesized by several cell types including kidney cells. Although there is evidence of its involvement in acute renal dysfunction, its role in progressive kidney injury is not completely known. In the present study, we investigated the role of PAF receptor (PAFR) in an experimental model of chronic renal disease. Wild-type (WT) and PAFR knockout (KO) mice underwent unilateral ureter obstruction (UUO), and at kill time, urine and kidney tissue was collected. PAFR KO animals compared with WT mice present: (a) less renal dysfunction, evaluated by urine protein/creatinine ratio; (b) less fibrosis evaluated by collagen deposition, type I collagen, Lysyl Oxidase-1 (LOX-1) and transforming growth factor ß (TGF-ß) gene expression, and higher expression of bone morphogenetic protein 7 (BMP-7) (3.3-fold lower TGF-ß/BMP-7 ratio); (c) downregulation of extracellular matrix (ECM) and adhesion molecule-related machinery genes; and (d) lower levels of pro-inflammatory cytokines. These indicate that PAFR engagement by PAF or PAF-like molecules generated during UUO potentiates renal dysfunction and fibrosis and might promote epithelial-to-mesenchymal transition (EMT). Also, early blockade of PAFR after UUO leads to a protective effect, with less fibrosis deposition. In conclusion, PAFR signaling contributes to a pro-inflammatory environment in the model of obstructive nephropathy, favoring the fibrotic process, which lately will generate renal dysfunction and progressive organ failure.


Assuntos
Rim/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Azepinas , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , Rim/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Nefrite/metabolismo , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Insuficiência Renal Crônica/patologia , Triazóis , Obstrução Ureteral
13.
Mediators Inflamm ; 2014: 291024, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25132730

RESUMO

Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN.


Assuntos
Injúria Renal Aguda/metabolismo , Adenina/toxicidade , Quimiocina CCL3/metabolismo , Rim/metabolismo , Macrófagos/metabolismo , Receptores CCR5/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Animais , Quimiocina CCL3/genética , Citometria de Fluxo , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Nefrite Intersticial/metabolismo , Receptores CCR5/genética
14.
J Leukoc Biol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652699

RESUMO

The Mammalian Target of Rapamycin (mTOR) pathway plays a key role in determining immune cells function through modulation of their metabolic status. By specific deletion of Rictor in CD11c+ myeloid cells (referred to here as CD11cRicΔ/Δ), this study investigated the role of mTOR complex 2 (mTORC2) signalling in dendritic cells (DCs) function in mice. We showed that upon DSS-induced colitis, lack of mTORC2 signalling CD11c+ cells diminishes colitis score, and abrogates dendritic cell (DC) migration to the mesenteric lymph nodes (MLN), thereby diminishing the infiltration of T helper (Th) 17 cells in the lamina propria (LP) and subsequent inflammation. These findings corroborate with abrogation of cytoskeleton organization and decreased activation of Rac1 and Cdc42 GTPases observed in CD11c+-mTORC2-deficient cells. Meta-analysis on colonic samples from ulcerative colitis (UC) patients revealed increased gene expression of pro-inflammatory cytokines which coincided with augmented expression of mTOR pathway, positive correlation between the DC marker ITGAX and IL-6, the expression of RICTOR, and CDC42. Together, this work proposes that targeting mTORC2 on DCs offers a key to hamper inflammatory responses and this way, ameliorates the progression and severity of intestinal inflammatory diseases.

15.
Cells ; 12(4)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36831272

RESUMO

Cardiorenal syndrome type 3 (CRS 3) occurs when there is an acute kidney injury (AKI) leading to the development of an acute cardiac injury. The immune system is involved in modulating the severity of kidney injury, and the role of immune system cells in the development of CRS 3 is not well established. The present work aims to characterize the macrophage and T and B lymphocyte populations in kidney and heart tissue after AKI induced by renal I/R. Thus, C57BL/6 mice were subjected to a renal I/R protocol by occlusion of the left renal pedicle (unilateral) for 60 min, followed by reperfusion for 3, 8 and 15 days. The immune cell populations of interest were identified using flow cytometry, and RT-qPCR was used to evaluate gene expression. As a result, a significant increase in TCD4+, TCD8+ lymphocytes and M1 macrophages to the renal tissue was observed, while B cells in the heart decreased. A renal tissue repair response characterized by Foxp3 activation predominated. However, a more inflammatory profile was shown in the heart tissue influenced by IL-17RA and IL-1ß. In conclusion, the AKI generated by renal I/R was able to activate and recruit T and B lymphocytes and macrophages, as well as pro-inflammatory mediators to renal and cardiac tissue, showing the role of the immune system as a bridge between both organs in the context of CRS 3.


Assuntos
Injúria Renal Aguda , Síndrome Cardiorrenal , Animais , Camundongos , Síndrome Cardiorrenal/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Coração , Injúria Renal Aguda/metabolismo
16.
Front Pharmacol ; 14: 1248757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927592

RESUMO

Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.

17.
Peptides ; 155: 170834, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753504

RESUMO

Intestinal epithelial cells constantly crosstalk with the gut microbiota and immune cells of the gut lamina propria. Enteroendocrine cells, secrete hormones, such as incretin hormones, which participate in host physiological events, such as stimulating insulin secretion, satiety, and glucose homeostasis. Interestingly, evidence suggests that the incretin pathway may influence immune cell activation. Consequently, drugs targeting the incretin hormone signaling pathway may ameliorate inflammatory diseases such as inflammatory bowel diseases, cancer, and autoimmune diseases. In this review, we discuss how these hormones may modulate two subsets of CD4 + T cells, the regulatory T cells (Treg)/Th17 axis important for gut homeostasis: thus, preventing the development and progression of inflammatory diseases. We also summarize the main experimental and clinical findings using drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (GLP-1) signaling pathways and their great impact on conditions in which the Treg/Th17 axis is disturbed such as inflammatory diseases and cancer. Understanding the role of incretin stimulation in immune cell activation and function, might contribute to new therapeutic designs for the treatment of inflammatory diseases, autoimmunity, and tumors.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Humanos , Incretinas/uso terapêutico , Insulina/metabolismo , Linfócitos T Reguladores/metabolismo
18.
Nat Rev Nephrol ; 17(7): 465-480, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828286

RESUMO

Insights into the relationship between immunometabolism and inflammation have enabled the targeting of several immunity-mediated inflammatory processes that underlie infectious diseases and cancer or drive transplant rejection, but this field remains largely unexplored in kidney diseases. The kidneys comprise heterogeneous cell populations, contain distinct microenvironments such as areas of hypoxia and hypersalinity, and are responsible for a functional triad of filtration, reabsorption and secretion. These distinctive features create myriad potential metabolic therapeutic targets in the kidney. Immune cells have crucial roles in the maintenance of kidney homeostasis and in the response to kidney injury, and their function is intricately connected to their metabolic properties. Changes in nutrient availability and biomolecules, such as cytokines, growth factors and hormones, initiate cellular signalling events that involve energy-sensing molecules and other metabolism-related proteins to coordinate immune cell differentiation, activation and function. Disruption of homeostasis promptly triggers the metabolic reorganization of kidney immune and non-immune cells, which can promote inflammation and tissue damage. The metabolic differences between kidney and immune cells offer an opportunity to specifically target immunometabolism in the kidney.


Assuntos
Metabolismo Energético/imunologia , Sistema Imunitário/fisiologia , Nefropatias/imunologia , Imunidade Adaptativa/fisiologia , Humanos , Imunidade Inata/fisiologia
19.
Expert Opin Drug Deliv ; 17(11): 1615-1630, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32816566

RESUMO

INTRODUCTION: Immunological skin dysfunctions trigger the synthesis and release of inflammatory cytokines, which induce recurrent skin inflammation associated with chronic itching, inefficient barrier behavior, and reduced skin hydration. These features characterize a multifactorial chronic inflammatory disease atopic dermatitis (AD). AD therapy includes anti-inflammatory drugs and immunosuppressors as well as non-pharmacological alternatives such as emollients, moisturizers, and lipids (ceramides, phospholipids) for modulating the skin hydration and the barrier repair. However, these treatments are inconvenient with low drug skin penetration and insufficient maintenance on the application site. AREAS COVERED: Nanotechnology-based therapies can be a great strategy to overcome these limitations. Considering the particular skin morphological organization, SC lipid matrix composition, and immunological functions/features related to nanocarriers, this review focuses on recent developments of nanoparticulate systems (polymeric, lipid-based, inorganic) as parent or hybrid systems including their chemical composition, physico-chemical and biopharmaceutical properties, and differential characteristics that evaluate them as new effective drug-delivery systems for AD treatment. EXPERT OPINION: Despite the several innovative formulations, research in nanotechnology-based carriers should address specific aspects such as the use of moisturizers associated to pharmacological therapies, toxicity studies, scale-up production processes and the nanocarrier influence on immunological response. These approaches will help researchers choose the most appropriate nanocarrier system and widen nanomedicine applications and commercialization.


Assuntos
Dermatite Atópica/tratamento farmacológico , Nanomedicina , Animais , Ceramidas/administração & dosagem , Dermatite Atópica/fisiopatologia , Emolientes/administração & dosagem , Humanos , Lipídeos/uso terapêutico , Pele/patologia
20.
Cells ; 9(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340348

RESUMO

Mesenchymal stromal cells (MSCs) can generate immunological tolerance due to their regulatory activity in many immune cells. Extracellular vesicles (EVs) release is a pivotal mechanism by which MSCs exert their actions. In this study, we evaluate whether mesenchymal stromal cell extracellular vesicles (MSC-EVs) can modulate T cell response. MSCs were expanded and EVs were obtained by differential ultracentrifugation of the supernatant. The incorporation of MSC-EVs by T cells was detected by confocal microscopy. Expression of surface markers was detected by flow cytometry or CytoFLEX and cytokines were detected by RT-PCR, FACS and confocal microscopy and a miRNA PCR array was performed. We demonstrated that MSC-EVs were incorporated by lymphocytes in vitro and decreased T cell proliferation and Th1 differentiation. Interestingly, in Th1 polarization, MSC-EVs increased Foxp3 expression and generated a subpopulation of IFN-γ+/Foxp3+T cells with suppressive capacity. A differential expression profile of miRNAs in MSC-EVs-treated Th1 cells was seen, and also a modulation of one of their target genes, TGFbR2. MSC-EVs altered the metabolism of Th1-differentiated T cells, suggesting the involvement of the TGF-ß pathway in this metabolic modulation. The addition of MSC-EVs in vivo, in an OVA immunization model, generated cells Foxp3+. Thus, our findings suggest that MSC-EVs are able to specifically modulate activated T cells at an alternative regulatory profile by miRNAs and metabolism shifting.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/genética , Proliferação de Células/genética , Vesículas Extracelulares/ultraestrutura , Fatores de Transcrição Forkhead/metabolismo , Glicólise , Potencial da Membrana Mitocondrial , Células-Tronco Mesenquimais/ultraestrutura , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Linfócitos T Reguladores/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA