Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 34(51): e2108830, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35894513

RESUMO

Ever since the invention of solid-state transistors, binary devices have dominated the electronics industry. Although the binary technology links the natural property of devices to be in the ON or OFF state with two logic levels, it provides the least possible information content per interconnect. Multi-valued logic (MVL) has long been considered as a means of improving the computation efficiency and reducing the power consumption of modern chips. In view of the power density limits of the conventional complementary metal-oxide-semiconductor technology, MVL technologies have recently gained even more attention, and various MVL unit devices based on conventional and emerging materials have been proposed. Herein, the recent achievements toward the development of compact MVL unit devices are reviewed. First, basic principles of MVL technologies are introduced by describing methods of obtaining multiple logic states and discussing radix-related aspects of MVL computation. Next, MVL unit devices are classified and overviewed with emphasis on principles of operation, technologies, and applications. Finally, a comparative discussion of strengths and weaknesses is provided for each class of MVL devices, and the review concludes with the outlook for the MVL field.

2.
ACS Nano ; 16(6): 8827-8836, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35435652

RESUMO

A rapid surge in global energy consumption has led to a greater demand for renewable energy to overcome energy resource limitations and environmental problems. Recently, a number of van der Waals materials have been highlighted as efficient absorbers for very thin and highly efficient photovoltaic (PV) devices. Despite the predicted potential, achieving power conversion efficiencies (PCEs) above 5% in PV devices based on van der Waals materials has been challenging. Here, we demonstrate a vertical WSe2 PV device with a high PCE of 5.44% under one-sun AM1.5G illumination. We reveal the multifunctional nature of a tungsten oxide layer, which promotes a stronger internal electric field by overcoming limitations imposed by the Fermi-level pinning at WSe2 interfaces and acts as an electron-selective contact in combination with monolayer graphene. Together with the developed bottom contact scheme, this simple yet effective contact engineering method improves the PCE by more than five times.

3.
Adv Mater ; 34(36): e2202799, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35857340

RESUMO

Multi-valued logic (MVL) technology that utilizes more than two logic states has recently been reconsidered because of the demand for greater power saving in current binary logic systems. Extensive efforts have been invested in developing MVL devices with multiple threshold voltages by adopting negative differential transconductance and resistance. In this study, a reconfigurable, multiple negative-differential-resistance (m-NDR) device with an electric-field-induced tunability of multiple threshold voltages is reported, which comprises a BP/ReS2 heterojunction and a ReS2 /h-BN/metal capacitor. Tunability for the m-NDR phenomenon is achieved via the resistance modulation of the ReS2 layer by electrical pulses applied to the capacitor region. Reconfigurability is verified in terms of the function of an MVL circuit composed of a reconfigurable m-NDR device and a load transistor, wherein staggered-type and broken-type double peak-NDR device operations are adopted for ternary inverter and latch circuits, respectively.

4.
Adv Mater ; 33(40): e2102980, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34423469

RESUMO

Optogenetics refers to a technique that uses light to modulate neuronal activity with a high spatiotemporal resolution, which enables the manipulation of learning and memory functions in the human brain. This strategy of controlling neuronal activity using light can be applied for the development of intelligent systems, including neuromorphic and in-memory computing systems. Herein, a flexible van der Waals (vdW) optoelectronic synapse is reported, which is a core component of optogenetics-inspired intelligent systems. This synapse is fabricated on 2D vdW layered rhenium disulfide (ReS2 ) that features an inherent photosensitive memory nature derived from the persistent photoconductivity (PPC) effect, successfully mimicking the dynamics of biological synapses. Based on first-principles calculations, the PPC effect is identified to originate from sulfur vacancies in ReS2 that have an inherent tendency to form shallow defect states near the conduction band edges and under optical excitation lead to large lattice relaxation. Finally, the feasibility of applying the synapses in optogenetics-inspired intelligent systems is demonstrated via training and inference tasks for the CIFAR-10 dataset using a convolutional neural network composed of vdW optoelectronic synapse devices.


Assuntos
Eletrônica , Redes Neurais de Computação , Optogenética , Biomimética/instrumentação , Biomimética/métodos , Condutividade Elétrica , Luz , Rênio/química , Sulfetos/química , Sinapses/fisiologia
5.
Nanoscale Horiz ; 5(10): 1378-1385, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32725030

RESUMO

Multi-valued logic (MVL) technology is a promising approach for improving the data-handling capabilities and decreasing the power consumption of integrated circuits. This is especially attractive as conventional complementary metal-oxide-semiconductor technology is approaching its scaling and power density limits. Here, an ambipolar WSe2 field-effect transistor with two or more negative-differential-transconductance (NDT) regions in its transfer characteristic (NDTFET) is proposed for MVL applications of various radices. The operation and charge carrier transport mechanism of the NDTFET are studied first by Kelvin probe force microscopy, electrical, and capacitance-voltage measurements. Next, strategies for increasing the number of NDT regions and engineering the NDTFET transfer characteristic are discussed. Finally, the extensibility and tunability of our concept are demonstrated by adapting NDTFETs as core devices for ternary, quaternary, and quinary MVL inverters through simulations, where only WSe2 is employed as a channel material for all devices comprising the inverters. The MVL inverter operation principle and the mechanism of the multiple logic state formation are analyzed in detail. The proposed concept is practically verified by the fabrication of a ternary inverter.

6.
Adv Sci (Weinh) ; 7(19): 2000991, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33042740

RESUMO

Recently, combinations of 2D van der Waals (2D vdW) materials and organic materials have attracted attention because they facilitate the formation of various heterojunctions with excellent interface quality owing to the absence of dangling bonds on their surface. In this work, a double negative differential resistance (D-NDR) characteristic of a hybrid 2D vdW/organic tunneling device consisting of a hafnium disulfide/pentacene heterojunction and a 3D pentacene resistor is reported. This D-NDR phenomenon is achieved by precisely controlling an NDR peak voltage with the pentacene resistor and then integrating two distinct NDR devices in parallel. Then, the operation of a controllable-gain amplifier configured with the D-NDR device and an n-channel transistor is demonstrated using the Cadence Spectre simulation platform. The proposed D-NDR device technology based on a hybrid 2D vdW/organic heterostructure provides a scientific foundation for various circuit applications that require the NDR phenomenon.

7.
Nanoscale Horiz ; 5(4): 654-662, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32226980

RESUMO

For increasing the restricted bit-density in the conventional binary logic system, extensive research efforts have been directed toward implementing single devices with a two threshold voltage (VTH) characteristic via the single negative differential resistance (NDR) phenomenon. In particular, recent advances in forming van der Waals (vdW) heterostructures with two-dimensional crystals have opened up new possibilities for realizing such NDR-based tunneling devices. However, it has been challenging to exhibit three VTH through the multiple-NDR (m-NDR) phenomenon in a single device even by using vdW heterostructures. Here, we show the m-NDR device formed on a BP/(ReS2 + HfS2) type-III double-heterostructure. This m-NDR device is then integrated with a vdW transistor to demonstrate a ternary vdW latch circuit capable of storing three logic states. Finally, the ternary latch is extended toward ternary SRAM, and its high-speed write and read operations are theoretically verified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA