Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732245

RESUMO

Oxidative stress and inflammation are recognized as pivotal contributors and common features of several chronic degenerative diseases, including cancer, metabolic syndrome, type 2 diabetes, cardiovascular diseases and neurodegenerative disorders, affecting a high percentage of the population [...].


Assuntos
Inflamação , Doenças Neurodegenerativas , Estresse Oxidativo , Humanos , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença Crônica , Diabetes Mellitus Tipo 2/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , Síndrome Metabólica/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834601

RESUMO

Acute and chronic neural injuries, including stroke, brain trauma and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with high morbidity and mortality rates [...].


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Doença de Huntington , Humanos , Neuroproteção , Exercício Físico , Suplementos Nutricionais
3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835303

RESUMO

In recent years, we have been witnessing a dramatic rise in the incidence of neurodegenerative diseases, a phenomenon partly associated with the increase in life expectancy [...].


Assuntos
Produtos Biológicos , Doenças Neurodegenerativas , Humanos , Neuroproteção , Expectativa de Vida
4.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108190

RESUMO

Purines, such as adenine and guanine, perform several important functions in the cell. They are found in nucleic acids; are structural components of some coenzymes, including NADH and coenzyme A; and have a crucial role in the modulation of energy metabolism and signal transduction. Moreover, purines have been shown to play an important role in the physiology of platelets, muscles, and neurotransmission. All cells require a balanced number of purines for growth, proliferation, and survival. Under physiological conditions, enzymes involved in purines metabolism maintain a balanced ratio between their synthesis and degradation in the cell. In humans, the final product of purine catabolism is uric acid, while most other mammals possess the enzyme uricase that converts uric acid to allantoin, which can be easily eliminated with urine. During the last decades, hyperuricemia has been associated with a number of human extra-articular diseases (in particular, the cardiovascular ones) and their clinical severity. In this review, we go through the methods of investigation of purine metabolism dysfunctions, looking at the functionality of xanthine oxidoreductase and the formation of catabolites in urine and saliva. Finally, we discuss how these molecules can be used as markers of oxidative stress.


Assuntos
Purinas , Ácido Úrico , Animais , Humanos , Ácido Úrico/metabolismo , Purinas/metabolismo , Adenina , Guanina/metabolismo , Xantina Desidrogenase/metabolismo , Mamíferos/metabolismo
5.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068924

RESUMO

Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from 'Gorilla Glue' was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils' anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.


Assuntos
Cannabis , Óleos Voláteis , Sesquiterpenos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cannabis/química , Doenças Neuroinflamatórias , Destilação , Sesquiterpenos/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/farmacologia , Microglia , Lipopolissacarídeos/farmacologia
6.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903372

RESUMO

Olive pomace (OP) represents one of the main by-products of olive oil production, which still contains high quantities of health-promoting bioactive compounds. In the present study, three batches of sun-dried OP were characterized for their profile in phenolic compounds (by HPLC-DAD) and in vitro antioxidant properties (ABTS, FRAP and DPPH assays) before (methanolic extracts) and after (aqueous extracts) their simulated in vitro digestion and dialysis. Phenolic profiles, and, accordingly, the antioxidant activities, showed significant differences among the three OP batches, and most compounds showed good bioaccessibility after simulated digestion. Based on these preliminary screenings, the best OP aqueous extract (OP-W) was further characterized for its peptide composition and subdivided into seven fractions (OP-F). The most promising OP-F (characterized for its metabolome) and OP-W samples were then assessed for their potential anti-inflammatory properties in ex vivo human peripheral mononuclear cells (PBMCs) triggered or not with lipopolysaccharide (LPS). The levels of 16 pro-and anti-inflammatory cytokines were measured in PBMC culture media by multiplex ELISA assay, whereas the gene expressions of interleukin-6 (IL-6), IL-10 and TNF-α were measured by real time RT-qPCR. Interestingly, OP-W and PO-F samples had a similar effect in reducing the expressions of IL-6 and TNF-α, but only OP-W was able to reduce the release of these inflammatory mediators, suggesting that the anti-inflammatory activity of OP-W is different from that of OP-F.


Assuntos
Olea , Polifenóis , Humanos , Polifenóis/química , Antioxidantes/análise , Olea/química , Interleucina-6 , Fator de Necrose Tumoral alfa , Leucócitos Mononucleares/química , Fenóis/análise , Anti-Inflamatórios/química , Água , Extratos Vegetais/química
7.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742882

RESUMO

The great increase in life expectancy is linked to the necessity of counteracting chronic-degenerative diseases, e [...].


Assuntos
Inflamação , Estresse Oxidativo , Doença Crônica , Humanos , Expectativa de Vida
8.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458588

RESUMO

The A2A adenosine receptor (A2AAR) is one of the four subtypes activated by nucleoside adenosine, and the molecules able to selectively counteract its action are attractive tools for neurodegenerative disorders. In order to find novel A2AAR ligands, two series of compounds based on purine and triazolotriazine scaffolds were synthesized and tested at ARs. Compound 13 was also tested in an in vitro model of neuroinflammation. Some compounds were found to possess high affinity for A2AAR, and it was observed that compound 13 exerted anti-inflammatory properties in microglial cells. Molecular modeling studies results were in good agreement with the binding affinity data and underlined that triazolotriazine and purine scaffolds are interchangeable only when 5- and 2-positions of the triazolotriazine moiety (corresponding to the purine 2- and 8-positions) are substituted.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antagonistas de Receptores Purinérgicos P1 , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Purinas/química , Receptor A2A de Adenosina/metabolismo , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 21(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392722

RESUMO

Neurodegenerative diseases include a variety of pathologies such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer's and Parkinson's diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorders.


Assuntos
Biomarcadores/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Transplante de Células-Tronco Mesenquimais , Doenças Neurodegenerativas/terapia , Oxirredução , Transdução de Sinais
10.
Expert Rev Proteomics ; 16(6): 513-520, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31094245

RESUMO

Introduction: This review is an update on recent progress in proteomic studies of formalin-fixed paraffin-embedded (FFPE) tissues, which open the opportunity to investigate diseases and research potential biomarkers, particularly when availability of fresh/frozen tissues is low. Areas covered: We described improvement of existing protocols or the new ones regarding deparaffinization and protein extraction of FFPE samples published from 2014 to today. Moreover, the growing interest to use FFPE tissues for mass spectrometry imaging approach is presented together with the search of post-translational modifications. Expert opinion: In the last few years, the number of papers using FFPE tissues in proteomic analysis is growing. The interest to apply proteomic analysis to FFPE tissues lies in the easy accessibility of a great number of samples from archives. Nevertheless, standardization in the approach among the different researchers is not achieved, making essentially incomparable the results obtained. This limit should be overcome.


Assuntos
Inclusão em Parafina , Proteômica/métodos , Fixação de Tecidos/métodos , Biomarcadores/metabolismo , Humanos
11.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703472

RESUMO

Neurodegenerative diseases are among the most serious health problems affecting millions of people worldwide, and their incidence is dramatically growing together with increased lifespan [...].


Assuntos
Produtos Biológicos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Neuroproteção , Fármacos Neuroprotetores/uso terapêutico , Animais , Produtos Biológicos/química , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/química
12.
Int J Mol Sci ; 20(12)2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31234555

RESUMO

Neuroinflammation is one of the main contributors to the onset and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Microglial and astrocyte activation is a brain defense mechanism to counteract harmful pathogens and damaged tissues, while their prolonged activation induces neuroinflammation that can trigger or exacerbate neurodegeneration. Unfortunately, to date there are no pharmacological therapies able to slow down or stop the progression of neurodegeneration. For this reason, research is turning to the identification of natural compounds with protective action against these diseases. Considering the important role of neuroinflammation in the onset and development of neurodegenerative pathologies, natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Marine organisms represent a huge source of natural compounds, and among them, algae are appreciated sources of important bioactive components such as antioxidants, proteins, vitamins, minerals, soluble dietary fibers, polyunsaturated fatty acids, polysaccharides, sterols, carotenoids, tocopherols, terpenes, phycobilins, phycocolloids, and phycocyanins. Recently, numerous anti-inflammatory compounds have been isolated from marine algae with potential protective efficacy against neuroinflammation. This review highlights the key inflammatory processes involved in neurodegeneration and the potential of specific compounds from marine algae to counteract neuroinflammation in the CNS.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Alga Marinha/química , Doença de Alzheimer/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Carotenoides/farmacologia , Humanos , Inflamação/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Esteróis/farmacocinética , Terpenos/farmacologia
13.
BMC Complement Altern Med ; 18(1): 300, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419892

RESUMO

BACKGROUND: The interest towards botanicals and plant extracts has strongly risen due to their numerous biological effects and ability to counteract chronic diseases development. Among these effects, chemoprevention which represents the possibility to counteract the cancerogenetic process is one of the most studied. The extracts of mushroom Meripilus giganteus (MG) (Phylum of Basidiomycota) showed to exert antimicrobic, antioxidant and antiproliferative effects. Therefore, since its effect in leukemic cell lines has not been previously evaluated, we studied its potential chemopreventive effect in Jurkat and HL-60 cell lines. METHODS: MG ethanolic extract was characterized for its antioxidant activity and scavenging effect against different radical species. Moreover, its phenolic profile was evaluated by HPLC-MS-MS analyses. Flow cytometry (FCM) analyses of Jurkat and HL-60 cells treated with MG extract (0-750 µg/mL) for 24-72 h- allowed to evaluate its cytotoxicity, pro-apoptotic and anti-proliferative effect. To better characterize MG pro-apoptotic mechanism ROS intracellular level and the gene expression level of FAS, BAX and BCL2 were also evaluated. Moreover, to assess MG extract selectivity towards cancer cells, its cytotoxicity was also evaluated in human peripheral blood lymphocytes (PBL). RESULTS: MG extract induced apoptosis in Jurkat and HL-60 cells in a dose- and time- dependent manner by increasing BAX/BCL2 ratio, reducing ROS intracellular level and inducing FAS gene expression level. In fact, reduced ROS level is known to be related to the activation of apoptosis in leukemic cells by the involvement of death receptors. MG extract also induced cell-cycle arrest in HL-60 cells. Moreover, IC50 at 24 h treatment resulted 2 times higher in PBL than in leukemic cell lines. CONCLUSIONS: Our data suggest that MG extract might be considered a promising and partially selective chemopreventive agent since it is able to modulate different mechanisms in transformed cells at concentrations lower than in non-transformed ones.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Polyporales/química , Antineoplásicos/farmacologia , Etanol , Células HL-60 , Humanos , Células Jurkat , Leucemia
14.
Int J Mol Sci ; 19(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096819

RESUMO

Neurodegenerative diseases represent a heterogeneous group of disorders that share common features like abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, impairment of mitochondrial functions, apoptosis, inflammation, and oxidative stress. Despite recent advances in the research of biomarkers, early diagnosis, and pharmacotherapy, there are no treatments that can halt the progression of these age-associated neurodegenerative diseases. Numerous epidemiological studies indicate that long-term intake of a Mediterranean diet, characterized by a high consumption of extra virgin olive oil, correlates with better cognition in aged populations. Olive oil phenolic compounds have been demonstrated to have different biological activities like antioxidant, antithrombotic, and anti-inflammatory activities. Oleocanthal, a phenolic component of extra virgin olive oil, is getting more and more scientific attention due to its interesting biological activities. The aim of this research was to characterize the neuroprotective effects of oleocanthal against H2O2-induced oxidative stress in neuron-like SH-SY5Y cells. Moreover, protein expression profiling, combined with pathways analyses, was used to investigate the molecular events related to the protective effects. Oleocanthal was demonstrated to counteract oxidative stress, increasing cell viability, reducing reactive oxygen species (ROS) production, and increasing reduced glutathione (GSH) intracellular level. Proteomic analysis revealed that oleocanthal significantly modulates 19 proteins in the presence of H2O2. In particular, oleocanthal up-regulated proteins related to the proteasome, the chaperone heat shock protein 90, the glycolytic enzyme pyruvate kinase, and the antioxidant enzyme peroxiredoxin 1. Moreover, oleocanthal protection seems to be mediated by Akt activation. These data offer new insights into the molecular mechanisms behind oleocanthal protection against oxidative stress.


Assuntos
Aldeídos/farmacologia , Inflamação/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Envelhecimento/efeitos dos fármacos , Aldeídos/química , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Monoterpenos Ciclopentânicos , Humanos , Peróxido de Hidrogênio/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/genética , Fenóis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Proteômica , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Mol Sci ; 18(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068387

RESUMO

Neurological disorders such as stroke, Alzheimer's and Parkinson's diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, inflammation and apoptosis. A large body of evidence supports the beneficial effects of the Mediterranean diet in preventing neurodegeneration. As the Mediterranean diet is characterized by a high consumption of extra-virgin olive oil it has been hypothesized that olive oil, and in particular its phenols, could be responsible for the beneficial effect of the Mediterranean diet. This review provides an updated vision of the beneficial properties of olive oil and olive oil phenols in preventing/counteracting both acute and chronic neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/prevenção & controle , Azeite de Oliva/química , Fenóis/farmacologia , Dieta Mediterrânea , Humanos , Fármacos Neuroprotetores/farmacologia
16.
Chem Res Toxicol ; 28(6): 1234-45, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25933243

RESUMO

Glycation, an endogenous process that leads to the production of advanced glycation end products (AGEs), plays a role in the etiopathogenesis of different neurodegenerative diseases, such as Alzheimer's disease (AD). Methylglyoxal is the most potent precursor of AGEs, and high levels of methylglyoxal have been found in the cerebrospinal fluid of AD patients. Methylglyoxal may contribute to AD both inducing extensive protein cross-linking and mediating oxidative stress. The aim of this study was to investigate the role of sulforaphane, an isothiocyanate found in cruciferous vegetables, in counteracting methylglyoxal-induced damage in SH-SY5Y neuroblastoma cells. The data demonstrated that sulforaphane protects cells against glycative damage by inhibiting activation of the caspase-3 enzyme, reducing the phosphorylation of MAPK signaling pathways (ERK1/2, JNK, and p38), reducing oxidative stress, and increasing intracellular glutathione levels. For the first time, we demonstrate that sulforaphane enhances the methylglyoxal detoxifying system, increasing the expression and activity of glyoxalase 1. Sulforaphane modulated brain-derived neurotrophic factor and its pathway, whose dysregulation is related to AD development. Moreover, sulforaphane was able to revert the reduction of glucose uptake caused by methylglyoxal. In conclusion, sulforaphane demonstrates pleiotropic behavior thanks to its ability to act on different cellular targets, suggesting a potential role in preventing/counteracting multifactorial neurodegenerative diseases such as Alzheimer's.


Assuntos
Isotiocianatos/farmacologia , Fármacos Neuroprotetores/farmacologia , Aldeído Pirúvico/toxicidade , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glucose/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfóxidos , Células Tumorais Cultivadas
17.
J Am Coll Nutr ; 34 Suppl 1: 22-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26400430

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of mortality in the Western world. Multiple factors are involved in CVD, including genetic factors and modifiable factors such as diet, physical activity, and smoking. CVD incidence and prevalence increase progressively with age, and it is estimated that over 80% of men and women older than 75 years have clinically manifest CVD. To reduce the gap between life expectancy (LE) and healthy life expectancy is one of the main challenges of the 21st century. Lifestyle improvement appears to be the only sustainable approach to face the dramatic chronic-degenerative disease burden of an aging population. A healthy lifestyle, represented by avoiding smoking, following a healthy diet, and practicing physical activity, protects from chronic-degenerative disease onset and progression. A healthy dietetic approach specifically formulated for elderly people, with a defined pattern of nutraceutical bioactive compounds, may represent a key strategy to improve the aging process and increase the life span. This short review summarizes the biochemical mechanisms underpinning the cardiovascular protective effects of some nutraceutical compounds such as quercetin and sulforaphane.


Assuntos
Envelhecimento/fisiologia , Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Estilo de Vida , Substâncias Protetoras/farmacologia , Idoso , Idoso de 80 Anos ou mais , Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Humanos , Isotiocianatos/farmacologia , Expectativa de Vida , Quercetina/farmacologia , Sulfóxidos
18.
J Liposome Res ; 24(4): 323-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24807822

RESUMO

The purpose of this study was the development of multifunctional liposomes for nasal administration of tacrine hydrochloride. Liposomes were prepared using traditional excipients (cholesterol and phosphatidylcholine), partly enriched with α-tocopherol and/or Omega3 fatty acids. This approach was chosen in order to obtain at the same time two positive results: an enhanced drug permeation through nasal mucosa and a concomitant neuroprotective effect. Several liposome formulations were prepared using the Reverse Phase Evaporation technique followed by membrane filter extrusion. In particular, liposome capacity to enhance drug permeation was evaluated by means of membrane permeation and cellular uptake studies. Furthermore, liposome effect on neuronal viability and intracellular ROS production was evaluated as well as their cytoprotective effect against oxidative stress. All liposome formulations showed a mean diameter in the range of 175 nm to 219 nm with polydispersity index lower than 0.22, a lightly negative zeta potential and excellent encapsulation efficiency. Moreover, along with good mucoadhesive properties, multifunctional liposomes showed a markedly increase in tacrine permeability, which can be related to liposome fusion with cellular membrane, a hypothesis, which was also supported by cellular uptake studies. Finally, the addition of α-tocopherol without Omega3 fatty acids, was found to increase the neuroprotective activity and antioxidant properties of liposomes.


Assuntos
Inibidores da Colinesterase/farmacologia , Portadores de Fármacos/farmacologia , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Tacrina/farmacologia , Adesividade , Administração Intranasal , Animais , Transporte Biológico , Linhagem Celular , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Composição de Medicamentos , Humanos , Técnicas In Vitro , Lipossomos , Fusão de Membrana/efeitos dos fármacos , Mucosa Nasal/metabolismo , Neurônios/metabolismo , Nootrópicos/administração & dosagem , Nootrópicos/química , Nootrópicos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carneiro Doméstico , Tacrina/administração & dosagem , Tacrina/química , Tacrina/metabolismo
19.
Gut Microbes ; 16(1): 2363011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835220

RESUMO

The Mediterranean diet (MD) and its bioactive constituents have been advocated for their neuroprotective properties along with their capacity to affect gut microbiota speciation and metabolism. Mediated through the gut brain axis, this modulation of the microbiota may partly contribute to the neuroprotective properties of the MD. To explore this potential interaction, we evaluated the neuroprotective properties of a novel bioactive blend (Neurosyn240) resembling the Mediterranean diet in a rodent model of chronic low-grade inflammation. Behavioral tests of cognition, brain proteomic analysis, 16S rRNA sequencing, and 1H NMR metabolomic analyses were employed to develop an understanding of the gut-brain axis interactions involved. Recognition memory, as assessed by the novel object recognition task (NOR), decreased in response to LPS insult and was restored with Neurosyn240 supplementation. Although the open field task performance did not reach significance, it correlated with NOR performance indicating an element of anxiety related to this cognitive change. Behavioral changes associated with Neurosyn240 were accompanied by a shift in the microbiota composition which included the restoration of the Firmicutes: Bacteroidota ratio and an increase in Muribaculum, Rikenellaceae Alloprevotella, and most notably Akkermansia which significantly correlated with NOR performance. Akkermansia also correlated with the metabolites 5-aminovalerate, threonine, valine, uridine monophosphate, and adenosine monophosphate, which in turn significantly correlated with NOR performance. The proteomic profile within the brain was dramatically influenced by both interventions, with KEGG analysis highlighting oxidative phosphorylation and neurodegenerative disease-related pathways to be modulated. Intriguingly, a subset of these proteomic changes simultaneously correlated with Akkermansia abundance and predominantly related to oxidative phosphorylation, perhaps alluding to a protective gut-brain axis interaction. Collectively, our results suggest that the bioactive blend Neurosyn240 conferred cognitive and microbiota resilience in response to the deleterious effects of low-grade inflammation.


Assuntos
Cognição , Dieta Mediterrânea , Suplementos Nutricionais , Modelos Animais de Doenças , Microbioma Gastrointestinal , Inflamação , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Cognição/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/dietoterapia , Suplementos Nutricionais/análise , Camundongos Endogâmicos C57BL , Eixo Encéfalo-Intestino/fisiologia , Encéfalo/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética
20.
Food Funct ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912918

RESUMO

Dietary fiber has been shown to have multiple health benefits, including a positive effect on longevity and the gut microbiota. In the present study, Drosophila melanogaster has been chosen as an in vivo model organism to study the health effects of dietary fiber supplementation (DFS). DFS extended the mean half-life of male and female flies, but the absolute lifespan only increased in females. To reveal the underlying mechanisms, we examined the effect of DFS on gut microbiota diversity and abundance, local gut immunity, and the brain proteome. A significant difference in the gut microbial community was observed between groups with and without fiber supplementation, which reduced the gut pathogenic bacterial load. We also observed an upregulated expression of dual oxidase and a modulated expression of Attacin and Diptericin genes in the gut of older flies, possibly delaying the gut dysbiosis connected to the age-related gut immune dysfunction. Brain proteome analysis showed that DFS led to the modulation of metabolic processes connected to mitochondrial biogenesis, the RhoV-GTPase cycle, organelle biogenesis and maintenance, membrane trafficking and vesicle-mediated transport, possibly orchestrated through a gut-brain axis interaction. Taken together, our study shows that DFS can prolong the half-life and lifespan of flies, possibly by promoting a healthier gut environment and delaying the physiological dysbiosis that characterizes the ageing process. However, the RhoV-GTPase cycle at the brain level may deserve more attention in future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA