Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neurogenetics ; 15(2): 129-34, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638856

RESUMO

Recent large-scale association studies have identified over 100 MS risk loci. One of these MS risk variants is single-nucleotide polymorphism (SNP) rs17066096, located ~14 kb downstream of IL22RA2. IL22RA2 represents a compelling MS candidate gene due to the role of IL-22 in autoimmunity; however, rs17066096 does not map into any known functional element. We assessed whether rs17066096 or a nearby proxy SNP may exert pathogenic effects by affecting microRNA-to-mRNA binding and thus IL22RA2 expression using comprehensive in silico predictions, in vitro reporter assays, and genotyping experiments in 6,722 individuals. In silico screening identified two predicted microRNA binding sites in the 3'UTR of IL22RA2 (for hsa-miR-2278 and hsa-miR-411-5p) encompassing a SNP (rs28366) in moderate linkage disequilibrium with rs17066096 (r (2) = 0.4). The binding of both microRNAs to the IL22RA2 3'UTR was confirmed in vitro, but their binding affinities were not significantly affected by rs28366. Association analyses revealed significant association of rs17066096 and MS risk in our independent German dataset (odds ratio = 1.15, P = 3.48 × 10(-4)), but did not indicate rs28366 to be the cause of this signal. While our study provides independent validation of the association between rs17066096 and MS risk, this signal does not appear to be caused by sequence variants affecting microRNA function.


Assuntos
Regiões 3' não Traduzidas , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina/genética , Sítios de Ligação , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , RNA Mensageiro/metabolismo , Fatores de Risco
2.
Ultrasound Med Biol ; 32(3): 453-61, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16530105

RESUMO

This study evaluates the histopathological changes that follow insonation of a neoplasm with physiotherapy ultrasound. In 27 mice (C3HV/HeN strain), a subcutaneous melanoma (K1735(22)) was insonated with continuous physiotherapy ultrasound (1 MHz; spatial-average-temporal-average = 2.3 W cm(-2)). Analyses of contrast enhanced (0.1 mL Optison) power Doppler observations showed that insonation significantly (p < 0.05) increased the avascular area in the neoplasm. The predominant acute effect of insonating the neoplasm was an apparently irreparable dilation of the tumor capillaries with associated intercellular oedema; other immediate effects were haemorrage and increased intercellular fluid. Liquefactive necrosis of neoplastic cells was a delayed effect. There was a high correlation (R2 = 0.91) between the percent area affected on histologic examination and the percent increase in avascularity of the neoplasm in the Doppler study. In conclusion, physiotherapy ultrasound produced histologic changes in the tumor vasculature that were consistent with observations made by contrast enhanced power Doppler ultrasound.


Assuntos
Melanoma Experimental/irrigação sanguínea , Neovascularização Patológica/terapia , Modalidades de Fisioterapia , Neoplasias Cutâneas/irrigação sanguínea , Terapia por Ultrassom/métodos , Albuminas , Animais , Meios de Contraste , Fluorocarbonos , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos , Microbolhas , Transplante de Neoplasias , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/terapia , Ultrassonografia Doppler , Ultrassonografia de Intervenção
3.
Ultrasound Med Biol ; 31(10): 1403-10, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16223644

RESUMO

This study was aimed at determining if physiotherapy ultrasound (US) affected the fragile and leaky angiogenic blood vessels in a tumor. In 22 C3HV/HeN mice, a subcutaneous melanoma (K1735(22)) was insonated (1, 2 or 3 min) with continuous 1-MHz low-intensity (spatial-average temporal-average = 2.28 W cm(-2)), physiotherapy US. Contrast-enhanced (0.1 mL Optison) power Doppler US observations were made and histogram analyses of the images were performed. Before insonation, all but 7% of the tumor was perfused. The avascular area in tumors receiving 3-min treatment increased to 82% (p < 0.001). A linear regression analysis showed that each min of insonation led to a 25% reduction in tumor vascularity; the antivascular activity persisted for 24 h. Histology demonstrated disruption of vascular walls and tumor cell death in areas of vascular congestion and thrombosis. Physiotherapy US particularly targeted the vascular structures, and the effects on tumor cells appeared to be secondary to the resultant ischemia.


Assuntos
Processamento de Imagem Assistida por Computador , Melanoma Experimental/irrigação sanguínea , Neovascularização Patológica/terapia , Neoplasias Cutâneas/irrigação sanguínea , Terapia por Ultrassom/métodos , Albuminas , Animais , Meios de Contraste , Feminino , Fluorocarbonos , Temperatura Alta , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C3H , Neovascularização Patológica/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/terapia , Fatores de Tempo , Terapia por Ultrassom/efeitos adversos , Ultrassonografia Doppler em Cores
4.
PLoS One ; 10(11): e0143160, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618502

RESUMO

A central event in Alzheimer's disease is the accumulation of amyloid ß (Aß) peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP). APP overexpression leads to increased Aß generation and Alzheimer's disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aß levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aß levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes), non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3'UTR (untranslated region) at residues 3008-3027 (NM_201414.2). This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3'UTR G-quadruplex as a novel mechanism regulating APP expression.


Assuntos
Regiões 3' não Traduzidas , Precursor de Proteína beta-Amiloide/genética , Quadruplex G , Precursor de Proteína beta-Amiloide/metabolismo , Células HEK293 , Células HeLa , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Front Hum Neurosci ; 8: 501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071529

RESUMO

Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate "memory genes," these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1318 participants of the Berlin Aging Study II aged 60 years or older. The analyses highlight a number of novel single nucleotide polymorphisms (SNPs) associated with memory performance, including one located in a putative regulatory region of microRNA (miRNA) hsa-mir-138-5p (rs9882688, P-value = 7.8 × 10(-9)). Expression quantitative trait locus analyses on next-generation RNA-sequencing data revealed that rs9882688 genotypes show a significant correlation with the expression levels of this miRNA in 309 human lymphoblastoid cell lines (P-value = 5 × 10(-4)). In silico modeling of other top-ranking GWAS signals identified an additional memory-associated SNP in the 3' untranslated region (3' UTR) of DCP1B, a gene encoding a core component of the mRNA decapping complex in humans, predicted to interfere with hsa-mir-138-5p binding. This prediction was confirmed in vitro by luciferase assays showing differential binding of hsa-mir-138-5p to 3' UTR reporter constructs in two human cell lines (HEK293: P-value = 0.0470; SH-SY5Y: P-value = 0.0866). Finally, expression profiling of hsa-mir-138-5p and DCP1B mRNA in human post-mortem brain tissue revealed that both molecules are expressed simultaneously in frontal cortex and hippocampus, suggesting that the proposed interaction between hsa-mir-138-5p and DCP1B may also take place in vivo. In summary, by combining unbiased genome-wide screening with extensive in silico modeling, in vitro functional assays, and gene expression profiling, our study identified miRNA-138 as a potential molecular regulator of human memory function.

6.
Int J Alzheimers Dis ; 2011: 729382, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21423675

RESUMO

We report that NTRK2, the gene encoding for the TrkB receptor, can regulate APP metabolism, specifically AICD levels. Using the human neuroblastoma cell line SH-SY5Y, we characterized the effect of three TrkB isoforms (FL, SHC, T) on APP metabolism by knockdown and overexpression. We found that TrkB FL increases AICD-mediated transcription and APP levels while it decreases sAPP levels. These effects were mainly mediated by the tyrosine kinase activity of the receptor and partially by the PLC-γ- and SHC-binding sites. The TrkB T truncated isoform did not have significant effects on APP metabolism when transfected by itself, while the TrkB SHC decreased AICD-mediated transcription. TrkB T abolished TrkB FL effects on APP metabolism when cotransfected with it while TrkB SHC cotransfected with TrkB FL still showed increased APP levels. In conclusion, we demonstrated that TrkB isoforms have differential effects on APP metabolism.

7.
PLoS One ; 6(6): e20799, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21673973

RESUMO

Transgenic models of Alzheimer's disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit aspects of clinical AD neuropathology and symptomology. These include the generation of Aß(40) and Aß(42), the presence of amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In addition, these flies exhibit external morphological abnormalities. Treatment with a γ-secretase inhibitor suppressed these phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic interventions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Carbamatos/farmacologia , Cognição/efeitos dos fármacos , Dipeptídeos/farmacologia , Inibidores de Proteases/farmacologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Carbamatos/uso terapêutico , Cognição/fisiologia , Dipeptídeos/uso terapêutico , Modelos Animais de Doenças , Drosophila melanogaster , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Fenótipo , Inibidores de Proteases/uso terapêutico , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Fatores de Tempo
8.
J RNAi Gene Silencing ; 6(2): 411-5, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21139985

RESUMO

RNA interference (RNAi) is a widely used molecular biology technique to investigate the importance of specific genes in molecular pathways. Since mammalian cells are equipped with endogenous RNAi processing machinery, it has become common practice to transfect constructs that encode for short hairpin RNAs that are then cleaved to form the active RNAi sequences that bind to target mRNAs. Given the profit potential of this research approach, companies have developed retroviral libraries of shRNA constructs targeting the majority of the human genes. Recent technologic advances have allowed the rapid improvement of the vectors carrying the shRNA constructs while the silencing sequences remain the same. Therefore, sub-cloning of shRNA sequences from more obsolete vectors to newer vectors is a straightforward way to take advantage of newer delivery technologies. We describe here a streamlined procedure to transfer shRNA sequences from the pSM2 retroviral vector to a newer pGIPZ vector that is more stable, contains a GFP cassette and allows the preparation of high titer viral particles for transduction of cells and in vivo use. We demonstrate that our protocol provides a cost-effective and fast method to successfully sub-clone shRNA from a pSM2 retroviral vector to a pGIPZ lentiviral vector making it a useful tool for the investigators that have purchased pSM2 vectors in the past and wish now to upgrade their constructs by inserting them in more versatile vectors.

9.
Mol Neurodegener ; 3: 10, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18684319

RESUMO

A number of studies have shown that increased APP levels, resulting from either a genomic locus duplication or alteration in APP regulatory sequences, can lead to development of early-onset dementias, including Alzheimer's disease (AD). Therefore, understanding how APP levels are regulated could provide valuable insight into the genetic basis of AD and illuminate novel therapeutic avenues for AD. Here we test the hypothesis that APP protein levels can be regulated by miRNAs, evolutionarily conserved small noncoding RNA molecules that play an important role in regulating gene expression. Utilizing human cell lines, we demonstrate that miRNAs hsa-mir-106a and hsa-mir-520c bind to their predicted target sequences in the APP 3'UTR and negatively regulate reporter gene expression. Over-expression of these miRNAs, but not control miRNAs, results in translational repression of APP mRNA and significantly reduces APP protein levels. These results are the first to demonstrate that levels of human APP can be regulated by miRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA