Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 9(5): e15753, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153380

RESUMO

Nowadays, among 3rd generation drug delivery systems, biodegradable polymeric based long-acting injectable depot has achieved tremendous success in clinical application. So far, there have been two dozen of commercial products of Poly (lactic-co-glycolic acid) microspheres available in the market. Recently, continuous manufacturing concept has been successfully applied on oral solid formulation from buzzword to reality. However, the polymeric injectable microspheres are still stayed at batch manufacturing phase due to the lack of understanding of knowledge matrix. In this study, micro-mixer as a plug-and-play emulsification modules, Raman spectroscopy and focused beam reflectance measurement as real-time monitoring modules are integrated into a novel semi-continuous manufacturing streamline to provides more efficient upscaling flexibility in microspheres production. In this end to end semi-continuous manufacturing process, amphiphilic block polymer monomethoxy-poly (ethylene glycol) modified PLGA (mPEG-PLGA) was used for encapsulating Gallic acid. Additionally, with guarantee of good robustness, the correlation relationship between critical process parameters, critical material attributes and critical quality attributes were investigated. The time-space evolution process and mechanism for formation of PEG-PLGA microsphere with particular morphology were elaborated. Altogether, this study firstly established semi-continuous manufacturing streamline for PLGA/PEG-PLGA microspheres, which would not only lower the cost of production, narrow process variability and smaller equipment/environmental footprint but also applied in-process control (IPC) and QbD principle on complicated production process of microspheres. Therefore, this study build confidence in the industrial development of PLGA/PEG-PLGA microspheres and establish best practice standards, which might be a quantum leap for developing PLGA microspheres in the future.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36225184

RESUMO

Quercus infectoria galls (QIGs) have a long history of treating ulcerative colitis (UC). The aqueous extract of QIG has an anti-UC effect. However, QIG's enema is easy to leak, and the action time and dose of the drug cannot be controlled well. Thus, QIG is inconvenient to use. This study aims to screen and prepare an optimized thermosensitive in situ gel with slow release and retention. Taking the transition sol-gel temperature (T sol-gel) as the investigation index, the Box-Behnken design response surface method (BBD-RSM) was used to optimize the dosages of Poloxamer 407 (P407), Poloxamer 188 (P188), and hydroxypropyl methyl cellulose (HPMC). Moreover, three formulations were selected, and the in vitro release rates were further optimized. The optimized rates of P407, P188, and HPMC were 24.07%, 1.22%, and 0.60%, respectively, and T sol-gel was 32.8°C ± 0.4°C. The cumulative release of gallic acid in the gel conformed to the first-order kinetic equation, and gallic acid was released entirely within 24 h. In addition, the morphological and chemical characterization of thermosensitive in situ gel demonstrated that excipients did not affect the characteristic functional groups of QIG and that the surface of the QIG gel had a porous and loose structure. Rheological methods showed that the QIG thermosensitive in situ gel was fluid at low temperature and semisolid at gelation temperature. Therefore, the prepared gel was sensitive to temperature and had slow-release, local retention properties.

3.
Nanoscale ; 14(21): 7856-7863, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583119

RESUMO

Multidrug resistance (MDR) has become one of the most intractable problems in clinics as it would cause failure in chemotherapy. In this study, we demonstrated that a nanoscale self-assembled nanomedicine, which almost consisted of a pure chemo-drug, could efficiently overcome MDR. Celastrol (CST) was directly assembled into a discrete nanomedicine by precipitation, and then CST nanoparticles (CNPs) inhibited drug efflux pumps by activating HSF-1 expression and promoting HSF-1 translocation into nucleus to suppress the Pgp expression. The more drug accumulated in cells could activate apoptosis signals simultaneously and realize drug resistance reversal. CNPs significantly increased the level of ROS to regulate ERK/JNK signaling, which would further induce resistant cell apoptosis. The tandem apoptosis strategy used the same concentration of CST but achieved a higher antitumor effect. Overall, our study provides a new translational and alternative strategy using conventional natural products to overcome MDR with high efficacy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA