Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446583

RESUMO

Black poplar buds have high contents of many compounds with therapeutic potential, which are useful in cosmetics and the treatment of various dermatitis, respiratory diseases, etc. The aim of this study was to identify and exploit the local plant resources with biologically active properties from the Dobrogea area, Romania. For this purpose, materials were collected from the mentioned area, and macerates of black poplar were prepared in order to evaluate their qualities as antioxidant and antimicrobial agents. Three different black poplar buds' hydroalcoholic macerates were analyzed by the Folin-Ciocâlteau method to estimate the total content of phenolic compounds, by the HPLC-DAD method for identification and quantification of the main bioactive compounds and by the DPPH radical scavenging method to evaluate the antioxidant activity. All hydroalcoholic macerates showed high concentrations of phenolic compounds, the main individual compounds being gallic acid, chlorogenic acid, cinnamic acid, and methyl gallic acid. The antioxidant activity of the black poplar buds' hydroalcoholic macerates, evaluated by the DPPH radical scavenging test, showed high values, between 496 and 1200 mg GAE /100 g d.w. The Cd, Cu, Zn, Ni, and Pb concentrations released in dry poplar buds, determined by AAS, were below the detection limits. Hydroalcoholic macerates of black poplar were tested against two groups of gram-positive bacteria (Enterococcus and Staphylococcus) using an agar well diffusion assay. The in vitro inhibitory activities of the macerates were important and ranged from 8.2-9.4 mm inhibition zones (Staphylococcus) to 8.6 -10 mm inhibition zones (Enterococcus).


Assuntos
Anti-Infecciosos , Populus , Antioxidantes/farmacologia , Antioxidantes/química , Populus/química , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Fenóis/farmacologia
2.
Arch Microbiol ; 204(3): 160, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35113268

RESUMO

One approach to overcome the antimicrobial resistance of many pathogens is to associate compounds with antimicrobial properties and obtain combinations superior compared to the effect of each compound. To identify a possible potentiating effect, we tested and analyzed the inhibitory effect of the combination of coumarin with two pyrazole derivatives, 1,1'-methandiylbis (3,5-dimethyl-1H-pyrazole (AM4) and 3,5-dimethyl-1H-pyrazol-1-yl) methanol 3,5-dimethyl-1-hydroxymethylpyrazol (SAM4). A clear synergistic effect was recorded when coumarin was associated with SAM4, in which case the Fractional Inhibitory Concentration Index (FICI) had a value equal to 0.468 for Citrobacter freundii, Proteus mirabilis, and E. coli. In the other cases, however, both the association between coumarin and AM4 and coumarin SAM4 had only an additive effect (FICI = 0.937-1.00). The bactericidal effect of the coumarin-pyrazole combination over time was better in all cases compared to the effect of the compounds used separately. The viability of the bacterial cells at sub-inhibitory concentrations of the tested compounds was variable, depending on both the type of compound and the bacterial strain.


Assuntos
Escherichia coli , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Cumarínicos/farmacologia , Testes de Sensibilidade Microbiana , Pirazóis/farmacologia
3.
Pharmaceutics ; 16(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794319

RESUMO

The capacity of micro-organisms to form biofilms is a pervasive trait in the microbial realm. For pathogens, biofilm formation serves as a virulence factor facilitating successful host colonization. Simultaneously, infections stemming from biofilm-forming micro-organisms pose significant treatment challenges due to their heightened resistance to antimicrobial agents. Hence, the quest for active compounds capable of impeding microbial biofilm development stands as a pivotal pursuit in biomedical research. This study presents findings concerning the impact of three surfactants, namely, polysorbate 20 (T20), polysorbate 80 (T80), and sodium dodecyl sulfate (SDS), on the initial stage of biofilm development in both Staphylococcus aureus and Candida dubliniensis. In contrast to previous investigations, we conducted a comparative assessment of the biofilm development capacity of these two taxonomically distant groups, predicated on their shared ability to reduce TTC. The common metabolic trait shared by S. aureus and C. dubliniensis in reducing TTC to formazan facilitated a simultaneous evaluation of biofilm development under the influence of surfactants across both groups. Our results revealed that surfactants could impede the development of biofilms in both species by disrupting the initial cell attachment step. The observed effect was contingent upon the concentration and type of compound, with a higher inhibition observed in culture media supplemented with SDS. At maximum concentrations (5%), T20 and T80 significantly curtailed the formation and viability of S. aureus and C. dubliniensis biofilms. Specifically, T20 inhibited biofilm development by 75.36% in S. aureus and 71.18% in C. dubliniensis, while T80 exhibited a slightly lower inhibitory effect, with values ranging between 66.68% (C. dubliniensis) and 65.54% (S. aureus) compared to the controls. Incorporating these two non-toxic surfactants into pharmaceutical formulations could potentially enhance the inhibitory efficacy of selected antimicrobial agents, particularly in external topical applications.

4.
Curr Microbiol ; 66(2): 162-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23096409

RESUMO

Antibacterial activity of 1,1'-methandiylbis(2-methyl-1H-imidazole) (AIM) has been estimated both qualitatively and quantitatively against reference and clinical strains of Gram-positive and Gram-negative bacteria. MICs showed little variability among strains tested, ranging from 360 to 450 µg/ml and indicating rather a moderate antibacterial activity. Inhibition of dehydrogenase activity was significant in Escherichia coli ATCC 25922 and followed closely time-kill dynamics. Although moderate, AIM proved also to be useful on the ability to successfully inhibit the growth of antibiotic resistant clinical strains.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Imidazóis/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Oxirredutases/análise , Anti-Infecciosos/química , Imidazóis/química , Testes de Sensibilidade Microbiana/métodos , Fatores de Tempo
5.
Microorganisms ; 12(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38257878

RESUMO

This paper's purpose was to evaluate the interaction between three imidazole derivatives, (2-methyl-1H-imidazol-1-yl)methanol (SAM3), 1,1'-methanediylbis(1H-benzimidazole (AM5) and (1H-benzo[d]imidazol-1-yl)methanol 1-hydroxymethylbenzimidazole (SAM5) on the one hand, and sodium dodecyl sulphate (SDS) on the other, as antifungal combinations against Candida spp. Inhibitory activity was assessed using the agar diffusion method and Minimal Inhibitory Concentration (MIC) and showed moderate inhibitory activity of single imidazole derivatives against Candida spp. The mean value of MIC ranged from 200 µg/mL (SAM3) to 312.5 µg/mL (SAM3), while for SDS the MIC was around 1000 µg/mL. When used in combination with SDS, the imidazole derivatives demonstrated an improvement in their antifungal activity. Their MIC decreased over five times for AM5 and over seven times for SAM3 and SAM5, respectively, and ranged from 26.56 µg/mL (SAM3) to 53.90 µg/mL (AM5). Most combinations displayed an additive effect while a clear synergistic effect was recorded in only a few cases. Thus, the FIC Index (FICI) with values between 0.311 and 0.375 showed a synergistic effect against Candida spp. when SDS was associated with SAM3 (three strains), SAM5 (two strains) and AM5 (one strain). The association of imidazole derivatives with SDS led to the increased release of cellular material as well as the intracellular influx of crystal violet (CV), which indicated an alteration of the membrane permeability of Candida spp. cells. This favored the synergistic effect via increasing the intracellular influx of imidazoles.

6.
Toxics ; 11(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37505562

RESUMO

The widespread use of Tebuconazole-based fungicides in phytosanitary treatments on a wide range of crops, on the one hand, and the lack of official reports on the amount of fungicide residues in nearby water basins, on the other hand, may lead to uncontrolled and hazardous contamination of water sources used by the resident population, and to serious effects on the environment and public health. Our study explores the acute toxicological risk of this fungicide on various organisms, from bacteria and yeast to fish, using a battery of tests (standardized Toxkit microbiotests and acute semi-static tests). By investigating the interaction between Tebuconazole and bacteria and yeast organisms, we observed that Gram-negative bacteria displayed a strong tolerance for Tebuconazole, while Gram-positive bacteria and yeasts proved to be very sensitive. The fish experiment was conducted on Chelon auratus juveniles exposed to five concentrations of the fungicide Tebustar EW (Tebuconazole, 250 g/L as active substance). After 96 h of exposure, the LC50 for C. auratus was 1.13 mg/L. In the case of the Toxkit microbiotests' application, the following results were recorded: Spirodela polyrhiza EC50 = 2.204 mg/L (after 72 h exposure), Thamnocephalus platyurus EC50 = 0.115 mg/L (after 24 h), and Daphnia magna EC50 = 2.37 mg/L (after 24-48 h). With the exception of bacteria and yeast, the same response pattern was observed for all non-target species tested; the response range expressed by concentrations causing growth inhibition or mortality was small, ranging between very close values that are quite low, thereby demonstrating the high toxicity of Tebuconazole-based fungicides to the environment.

7.
Biomolecules ; 12(12)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551246

RESUMO

The combination of two compounds with known antimicrobial activity may, in some cases, be an effective way to limit the resistance to antibiotics of specific pathogens. Molecules carrying pyrazole moiety are well known for their bioactive properties and have wide applicability in the medical and pharmaceutical field. Surfactants have, among other useful properties, the ability to affect the growth of microorganisms. The paper reports on the effect of the combination of two pyrazole derivatives, (1H-pyrazol-1-yl) methanol 1-hydroxymethylpyrazole (SAM1) and 1,1'methandiylbis (1H-pyrazol) (AM1), with sorbitan monolaurate (polysorbate 21, Tween 21, T21) on the growth of Gram-positive and Gram-negative bacteria. The results demonstrated a different ability of this combination to inhibit Staphylococcus aureus and Escherichia coli. T21 intensified the inhibitory activity of the pyrazoles to a greater extent in the Gram-negative bacteria compared to the Gram-positive ones, a fact confirmed by time-kill experiments. The experimental data showed that the association of T21 with the pyrazoles led to the increased release of intracellular material and a more intense uptake of crystal violet, which indicates that the potentiation of the antibacterial effect was based on the modification of the normal permeability of bacterial cells. T21 acted as a modulating factor and increased the permeability of the membrane, allowing the accelerated penetration of the pyrazoles inside the bacterial cells. This fact is important in controlling the global increase in microbial resistance to antibiotics and antimicrobials and finding viable solutions to overcome the antibiotic crisis. The paper highlights the possibility of using non-toxic surfactant molecules in antimicrobial combinations with practical applications. This could widen the range of adjuvants in applications which would be useful in the control of resistant microorganisms.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/química , Polissorbatos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Pirazóis/farmacologia , Pirazóis/química , Tensoativos/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA