Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(2): 198-200, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139350

RESUMO

While single-cell analyses have improved our understanding of liver macrophage heterogeneity, their localization and cellular interactions remain unclear. In a recent issue of Cell, Guilliams et al. provide strategies to localize liver macrophage populations and their communication with neighboring cells during health and disease.


Assuntos
Células de Kupffer , Fígado , Comunicação Celular
2.
Immunity ; 54(9): 2101-2116.e6, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469775

RESUMO

Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.


Assuntos
Antígenos CD36/metabolismo , Células de Kupffer/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/fisiologia , Animais , Camundongos
3.
Mol Cell ; 81(5): 953-968.e9, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33503407

RESUMO

While the role of transcription factors and coactivators in controlling enhancer activity and chromatin structure linked to gene expression is well established, the involvement of corepressors is not. Using inflammatory macrophage activation as a model, we investigate here a corepressor complex containing GPS2 and SMRT both genome-wide and at the Ccl2 locus, encoding the chemokine CCL2 (MCP-1). We report that corepressors co-occupy candidate enhancers along with the coactivators CBP (H3K27 acetylase) and MED1 (mediator) but act antagonistically by repressing eRNA transcription-coupled H3K27 acetylation. Genome editing, transcriptional interference, and cistrome analysis reveals that apparently related enhancer and silencer elements control Ccl2 transcription in opposite ways. 4C-seq indicates that corepressor depletion or inflammatory signaling functions mechanistically similarly to trigger enhancer activation. In ob/ob mice, adipose tissue macrophage-selective depletion of the Ccl2 enhancer-transcribed eRNA reduces metaflammation. Thus, the identified corepressor-eRNA-chemokine pathway operates in vivo and suggests therapeutic opportunities by targeting eRNAs in immuno-metabolic diseases.


Assuntos
Quimiocina CCL2/genética , Proteínas Correpressoras/genética , Elementos Facilitadores Genéticos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Correpressor 2 de Receptor Nuclear/genética , Obesidade/genética , Elementos Silenciadores Transcricionais , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Sistemas CRISPR-Cas , Quimiocina CCL2/imunologia , Proteínas Correpressoras/imunologia , Edição de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Histona Acetiltransferases/genética , Histona Acetiltransferases/imunologia , Histonas/genética , Histonas/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/imunologia , Camundongos , Camundongos Obesos , Correpressor 2 de Receptor Nuclear/imunologia , Obesidade/imunologia , Obesidade/patologia , Células RAW 264.7 , RNA não Traduzido/genética , RNA não Traduzido/imunologia , Transdução de Sinais
4.
Mol Cell ; 79(1): 1-3, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619466

RESUMO

In this issue of Molecular Cell, Toda et al. (2020) show that postprandial elevation of LPS and insulin induce the production of IL-10 by adipose tissue macrophages. Hepatic gluconeogenesis is then inhibited synergistically by insulin and IL-10 to facilitate glucose clearance.


Assuntos
Insulina , Interleucina-10 , Tecido Adiposo , Lipopolissacarídeos , Fígado , Macrófagos , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
5.
EMBO J ; 42(23): e114086, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37807855

RESUMO

The immune response is an energy-demanding process that must be coordinated with systemic metabolic changes redirecting nutrients from stores to the immune system. Although this interplay is fundamental for the function of the immune system, the underlying mechanisms remain elusive. Our data show that the pro-inflammatory polarization of Drosophila macrophages is coupled to the production of the insulin antagonist ImpL2 through the activity of the transcription factor HIF1α. ImpL2 production, reflecting nutritional demands of activated macrophages, subsequently impairs insulin signaling in the fat body, thereby triggering FOXO-driven mobilization of lipoproteins. This metabolic adaptation is fundamental for the function of the immune system and an individual's resistance to infection. We demonstrated that analogically to Drosophila, mammalian immune-activated macrophages produce ImpL2 homolog IGFBP7 in a HIF1α-dependent manner and that enhanced IGFBP7 production by these cells induces mobilization of lipoproteins from hepatocytes. Hence, the production of ImpL2/IGFBP7 by macrophages represents an evolutionarily conserved mechanism by which macrophages alleviate insulin signaling in the central metabolic organ to secure nutrients necessary for their function upon bacterial infection.


Assuntos
Infecções Bacterianas , Proteínas de Drosophila , Resistência à Insulina , Animais , Antagonistas da Insulina/metabolismo , Antagonistas da Insulina/farmacologia , Drosophila/metabolismo , Insulina/metabolismo , Macrófagos/metabolismo , Infecções Bacterianas/metabolismo , Mamíferos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Drosophila/metabolismo
6.
Gut ; 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022268

RESUMO

OBJECTIVE: To better comprehend transcriptional phenotypes of cancer cells, we globally characterised RNA-binding proteins (RBPs) to identify altered RNAs, including long non-coding RNAs (lncRNAs). DESIGN: To unravel RBP-lncRNA interactions in cancer, we curated a list of ~2300 highly expressed RBPs in human cells, tested effects of RBPs and lncRNAs on patient survival in multiple cohorts, altered expression levels, integrated various sequencing, molecular and cell-based data. RESULTS: High expression of RBPs negatively affected patient survival in 21 cancer types, especially hepatocellular carcinoma (HCC). After knockdown of the top 10 upregulated RBPs and subsequent transcriptome analysis, we identified 88 differentially expressed lncRNAs, including 34 novel transcripts. CRISPRa-mediated overexpression of four lncRNAs had major effects on the HCC cell phenotype and transcriptome. Further investigation of four RBP-lncRNA pairs revealed involvement in distinct regulatory processes. The most noticeable RBP-lncRNA connection affected lipid metabolism, whereby the non-canonical RBP CCT3 regulated LINC00326 in a chaperonin-independent manner. Perturbation of the CCT3-LINC00326 regulatory network led to decreased lipid accumulation and increased lipid degradation in cellulo as well as diminished tumour growth in vivo. CONCLUSIONS: We revealed that RBP gene expression is perturbed in HCC and identified that RBPs exerted additional functions beyond their tasks under normal physiological conditions, which can be stimulated or intensified via lncRNAs and affected tumour growth.

7.
Gastroenterology ; 161(6): 1982-1997.e11, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34425095

RESUMO

BACKGROUND AND AIMS: Oxidative stress plays a key role in the development of metabolic complications associated with obesity, including insulin resistance and the most common chronic liver disease worldwide, nonalcoholic fatty liver disease. We have recently discovered that the microRNA miR-144 regulates protein levels of the master mediator of the antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2). On miR-144 silencing, the expression of NRF2 target genes was significantly upregulated, suggesting that miR-144 controls NRF2 at the level of both protein expression and activity. Here we explored a mechanism whereby hepatic miR-144 inhibited NRF2 activity upon obesity via the regulation of the tricarboxylic acid (TCA) metabolite, fumarate, a potent activator of NRF2. METHODS: We performed transcriptomic analysis in liver macrophages (LMs) of obese mice and identified the immuno-responsive gene 1 (Irg1) as a target of miR-144. IRG1 catalyzes the production of a TCA derivative, itaconate, an inhibitor of succinate dehydrogenase (SDH). TCA enzyme activities and kinetics were analyzed after miR-144 silencing in obese mice and human liver organoids using single-cell activity assays in situ and molecular dynamic simulations. RESULTS: Increased levels of miR-144 in obesity were associated with reduced expression of Irg1, which was restored on miR-144 silencing in vitro and in vivo. Furthermore, miR-144 overexpression reduces Irg1 expression and the production of itaconate in vitro. In alignment with the reduction in IRG1 levels and itaconate production, we observed an upregulation of SDH activity during obesity. Surprisingly, however, fumarate hydratase (FH) activity was also upregulated in obese livers, leading to the depletion of its substrate fumarate. miR-144 silencing selectively reduced the activities of both SDH and FH resulting in the accumulation of their related substrates succinate and fumarate. Moreover, molecular dynamics analyses revealed the potential role of itaconate as a competitive inhibitor of not only SDH but also FH. Combined, these results demonstrate that silencing of miR-144 inhibits the activity of NRF2 through decreased fumarate production in obesity. CONCLUSIONS: Herein we unravel a novel mechanism whereby miR-144 inhibits NRF2 activity through the consumption of fumarate by activation of FH. Our study demonstrates that hepatic miR-144 triggers a hyperactive FH in the TCA cycle leading to an impaired antioxidant response in obesity.


Assuntos
Fígado Gorduroso/enzimologia , Fumarato Hidratase/metabolismo , Resistência à Insulina , Fígado/enzimologia , Macrófagos/enzimologia , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/enzimologia , Animais , Carboxiliases/genética , Carboxiliases/metabolismo , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fumarato Hidratase/genética , Fumaratos/metabolismo , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Obesidade/genética , Estresse Oxidativo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Succinatos/metabolismo
8.
Diabetologia ; 62(12): 2179-2187, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31690986

RESUMO

Extracellular vesicles (EVs) are submicron-sized lipid envelopes that are produced and released from a parent cell and can be taken up by a recipient cell. EVs are capable of mediating cellular signalling by carrying nucleic acids, proteins, lipids and cellular metabolites between cells and organs. Metabolic dysfunction is associated with changes in plasma concentrations of EVs as well as alterations in their EV cargo. Since EVs can act as messengers between parent and recipient cells, they could be involved in cell-to-cell and organ-to-organ communication in metabolic diseases. Recent literature has shown that EVs are produced by cells within metabolic tissues, such as adipose tissue, pancreas, muscle and liver. These vesicles have therefore been proposed as a novel intercellular communication mode in systemic metabolic regulation. In this review, we will describe and discuss the current literature that investigates the role of adipose-derived EVs in the regulation of obesity-associated metabolic disease. We will particularly focus on the EV-dependent communication between adipocytes, the vasculature and immune cells in type 2 diabetes.


Assuntos
Exossomos/metabolismo , Vesículas Extracelulares/fisiologia , Doenças Metabólicas/metabolismo , Adipócitos/metabolismo , Comunicação Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Macrófagos/metabolismo
9.
Gastroenterology ; 162(6): 1784-1785, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35077756
10.
Exp Cell Res ; 360(1): 35-40, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341447

RESUMO

Macrophages are versatile and multifunctional cell types present in most vertebrate tissues. They are the first line of defense against pathogens through phagocytosis of microbial infections, particles and dead cells. Macrophages harbor additional functions besides immune protection by participating in essential homeostatic and tissue development functions. The immune response requires a concomitant and coordinated regulation of the energetic metabolism. In this review, we will discuss how macrophages influence metabolic tissues and in turn how metabolic pathways, particularly glucose and lipid metabolism, affect macrophage phenotypes.


Assuntos
Metabolismo Energético , Homeostase/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Humanos
11.
Nature ; 470(7334): 414-8, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21331046

RESUMO

Toll-like receptors (TLRs) function as initiators of inflammation through their ability to sense pathogen-associated molecular patterns and products of tissue damage. Transcriptional activation of many TLR-responsive genes requires an initial de-repression step in which nuclear receptor co-repressor (NCoR) complexes are actively removed from the promoters of target genes to relieve basal repression. Ligand-dependent SUMOylation of liver X receptors (LXRs) has been found to suppress TLR4-induced transcription potently by preventing the NCoR clearance step, but the underlying mechanisms remain enigmatic. Here we provide evidence that coronin 2A (CORO2A), a component of the NCoR complex of previously unknown function, mediates TLR-induced NCoR turnover by a mechanism involving interaction with oligomeric nuclear actin. SUMOylated LXRs block NCoR turnover by binding to a conserved SUMO2/SUMO3-interaction motif in CORO2A and preventing actin recruitment. Intriguingly, the LXR transrepression pathway can itself be inactivated by inflammatory signals that induce calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ)-dependent phosphorylation of LXRs, leading to their deSUMOylation by the SUMO protease SENP3 and release from CORO2A. These findings uncover a CORO2A-actin-dependent mechanism for the de-repression of inflammatory response genes that can be differentially regulated by phosphorylation and by nuclear receptor signalling pathways that control immunity and homeostasis.


Assuntos
Actinas/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Proteínas dos Microfilamentos/metabolismo , Actinas/química , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Cisteína Endopeptidases , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Homeostase/genética , Humanos , Lipopolissacarídeos/farmacologia , Receptores X do Fígado , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Receptores Nucleares Órfãos/metabolismo , Peptídeo Hidrolases/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Sumoilação , Tioglicolatos/farmacologia , Receptores Toll-Like/metabolismo
12.
FASEB J ; 29(7): 2959-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25805830

RESUMO

Obesity promotes insulin resistance associated with liver inflammation, elevated glucose production, and type 2 diabetes. Although insulin resistance is attenuated in genetic mouse models that suppress systemic inflammation, it is not clear whether local resident macrophages in liver, denoted Kupffer cells (KCs), directly contribute to this syndrome. We addressed this question by selectively silencing the expression of the master regulator of inflammation, NF-κB, in KCs in obese mice. We used glucan-encapsulated small interfering RNA particles (GeRPs) that selectively silence gene expression in macrophages in vivo. Following intravenous injections, GeRPs containing siRNA against p65 of the NF-κB complex caused loss of NF-κB p65 expression in KCs without disrupting NF-κB in hepatocytes or macrophages in other tissues. Silencing of NF-κB expression in KCs in obese mice decreased cytokine secretion and improved insulin sensitivity and glucose tolerance without affecting hepatic lipid accumulation. Importantly, GeRPs had no detectable toxic effect. Thus, KCs are key contributors to hepatic insulin resistance in obesity and a potential therapeutic target for metabolic disease.


Assuntos
Resistência à Insulina/fisiologia , Células de Kupffer/metabolismo , Obesidade/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Animais , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Inativação Gênica , Teste de Tolerância a Glucose , Humanos , Técnicas In Vitro , Injeções Intravenosas , Células de Kupffer/patologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Obesidade/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Fator de Transcrição RelA/genética
13.
Mol Pharm ; 13(3): 964-978, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26815386

RESUMO

Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multicomponent formulation of ß-1,3-d-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were nontoxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses.


Assuntos
Aminas/química , Sistemas de Liberação de Medicamentos , Terapia Genética , Macrófagos Peritoneais/efeitos dos fármacos , Osteopontina/antagonistas & inibidores , Fragmentos de Peptídeos/química , RNA Interferente Pequeno/administração & dosagem , beta-Glucanas/química , Animais , Células Cultivadas , Humanos , Inflamação/genética , Inflamação/terapia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/terapia , Osteopontina/genética , Proteoglicanas , RNA Interferente Pequeno/genética
14.
Proc Natl Acad Sci U S A ; 110(20): 8278-83, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630254

RESUMO

Adipose tissue (AT) inflammation and infiltration by macrophages is associated with insulin resistance and type 2 diabetes in obese humans, offering a potential target for therapeutics. However, whether AT macrophages (ATMs) directly contribute to systemic glucose intolerance has not been determined. The reason is the lack of methods to ablate inflammatory genes expressed in macrophages specifically localized within AT depots, leaving macrophages in other tissues unaffected. Here we report that i.p. administration of siRNA encapsulated by glucan shells in obese mice selectively silences genes in epididymal ATMs, whereas macrophages within lung, spleen, kidney, heart, skeletal muscle, subcutaneous (SubQ) adipose, and liver are not targeted. Such administration of GeRPs to silence the inflammatory cytokines TNF-α or osteopontin in epididymal ATMs of obese mice caused significant improvement in glucose tolerance. These data are consistent with the hypothesis that cytokines produced by ATMs can exacerbate whole-body glucose intolerance.


Assuntos
Tecido Adiposo/citologia , Inativação Gênica , Intolerância à Glucose/metabolismo , Macrófagos/metabolismo , Obesidade/fisiopatologia , Animais , Citocinas/metabolismo , Epididimo/citologia , Epididimo/metabolismo , Intolerância à Glucose/genética , Inflamação , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microscopia de Fluorescência , Osteopontina/metabolismo , Fagocitose , Interferência de RNA , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa/metabolismo
15.
Nature ; 458(7242): 1180-4, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19407801

RESUMO

Gene silencing by double-stranded RNA, denoted RNA interference, represents a new paradigm for rational drug design. However, the transformative therapeutic potential of short interfering RNA (siRNA) has been stymied by a key obstacle-safe delivery to specified target cells in vivo. Macrophages are particularly attractive targets for RNA interference therapy because they promote pathogenic inflammatory responses in diseases such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease and diabetes. Here we report the engineering of beta1,3-D-glucan-encapsulated siRNA particles (GeRPs) as efficient oral delivery vehicles that potently silence genes in mouse macrophages in vitro and in vivo. Oral gavage of mice with GeRPs containing as little as 20 microg kg(-1) siRNA directed against tumour necrosis factor alpha (Tnf-alpha) depleted its messenger RNA in macrophages recovered from the peritoneum, spleen, liver and lung, and lowered serum Tnf-alpha levels. Screening with GeRPs for inflammation genes revealed that the mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) is a previously unknown mediator of cytokine expression. Importantly, silencing Map4k4 in macrophages in vivo protected mice from lipopolysaccharide-induced lethality by inhibiting Tnf-alpha and interleukin-1beta production. This technology defines a new strategy for oral delivery of siRNA to attenuate inflammatory responses in human disease.


Assuntos
Sistemas de Liberação de Medicamentos , Inativação Gênica , Inflamação/prevenção & controle , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/administração & dosagem , Administração Oral , Animais , Ativação Enzimática/efeitos dos fármacos , Glucanos/metabolismo , Inflamação/genética , Interleucina-1beta/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Especificidade por Substrato , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinase Induzida por NF-kappaB
16.
Am J Physiol Endocrinol Metab ; 307(4): E374-83, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24986598

RESUMO

Proinflammatory pathways in adipose tissue macrophages (ATMs) can impair glucose tolerance in obesity, but ATMs may also be beneficial as repositories for excess lipid that adipocytes are unable to store. To test this hypothesis, we selectively targeted visceral ATMs in obese mice with siRNA against lipoprotein lipase (LPL), leaving macrophages within other organs unaffected. Selective silencing of ATM LPL decreased foam cell formation in visceral adipose tissue of obese mice, consistent with a reduced supply of fatty acids from VLDL hydrolysis. Unexpectedly, silencing LPL also decreased the expression of genes involved in fatty acid uptake (CD36) and esterification in ATMs. This deficit in fatty acid uptake capacity was associated with increased circulating serum free fatty acids. Importantly, ATM LPL silencing also caused a marked increase in circulating fatty acid-binding protein-4, an adipocyte-derived lipid chaperone previously reported to induce liver insulin resistance and glucose intolerance. Consistent with this concept, obese mice with LPL-depleted ATMs exhibited higher hepatic glucose production from pyruvate and glucose intolerance. Silencing CD36 in ATMs also promoted glucose intolerance. Taken together, the data indicate that LPL secreted by ATMs enhances their ability to sequester excess lipid in obese mice, promoting systemic glucose tolerance.


Assuntos
Tecido Adiposo/metabolismo , Glicemia/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Células Cultivadas , Intolerância à Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/genética , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia , RNA Interferente Pequeno/farmacologia
17.
Am J Physiol Endocrinol Metab ; 304(9): E951-63, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23482447

RESUMO

The pathophysiology of obesity and type 2 diabetes in rodents and humans is characterized by low-grade inflammation in adipose tissue and liver. The CD40 receptor and its ligand CD40L initiate immune cell signaling promoting inflammation, but conflicting data on CD40L-null mice confound its role in obesity-associated insulin resistance. Here, we demonstrate that CD40 receptor-deficient mice on a high-fat diet display the expected decrease in hepatic cytokine levels but paradoxically exhibit liver steatosis, insulin resistance, and glucose intolerance compared with their age-matched wild-type controls. Hyperinsulinemic-euglycemic clamp studies also demonstrated insulin resistance in glucose utilization by the CD40-null mice compared with wild-type mice. In contrast to liver, adipose tissue in CD40-deficient animals harbors elevated cytokine levels and infiltration of inflammatory cells, particularly macrophages and CD8(+) effector T cells. In addition, ex vivo explants of epididymal adipose tissue from CD40(-/-) mice display elevated basal and isoproterenol-stimulated lipolysis, suggesting a potential increase of lipid efflux from visceral fat to the liver. These findings reveal that 1) CD40-null mice represent an unusual model of hepatic steatosis with reduced hepatic inflammation, and 2) CD40 unexpectedly functions in adipose tissue to attenuate its inflammation in obesity, thereby protecting against hepatic steatosis.


Assuntos
Tecido Adiposo/patologia , Antígenos CD40/deficiência , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Inflamação/genética , Inflamação/patologia , Resistência à Insulina/genética , Obesidade/genética , Obesidade/patologia , Adipócitos/metabolismo , Animais , Western Blotting , Dieta , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real
18.
Nat Metab ; 5(7): 1188-1203, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414931

RESUMO

Although multiple populations of macrophages have been described in the human liver, their function and turnover in patients with obesity at high risk of developing non-alcoholic fatty liver disease (NAFLD) and cirrhosis are currently unknown. Herein, we identify a specific human population of resident liver myeloid cells that protects against the metabolic impairment associated with obesity. By studying the turnover of liver myeloid cells in individuals undergoing liver transplantation, we find that liver myeloid cell turnover differs between humans and mice. Using single-cell techniques and flow cytometry, we determine that the proportion of the protective resident liver myeloid cells, denoted liver myeloid cells 2 (LM2), decreases during obesity. Functional validation approaches using human 2D and 3D cultures reveal that the presence of LM2 ameliorates the oxidative stress associated with obese conditions. Our study indicates that resident myeloid cells could be a therapeutic target to decrease the oxidative stress associated with NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Células Mieloides/metabolismo , Estresse Fisiológico
19.
Biochem J ; 436(2): 351-62, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21418037

RESUMO

Phagocytic macrophages and dendritic cells are desirable targets for potential RNAi (RNA interference) therapeutics because they often mediate pathogenic inflammation and autoimmune responses. We recently engineered a complex 5 component glucan-based encapsulation system for siRNA (small interfering RNA) delivery to phagocytes. In experiments designed to simplify this original formulation, we discovered that the amphipathic peptide Endo-Porter forms stable nanocomplexes with siRNA that can mediate potent gene silencing in multiple cell types. In order to restrict such gene silencing to phagocytes, a method was developed to entrap siRNA-Endo-Porter complexes in glucan shells of 2-4 µm diameter in the absence of other components. The resulting glucan particles containing fluorescently labelled siRNA were readily internalized by macrophages, but not other cell types, and released the labelled siRNA into the macrophage cytoplasm. Intraperitoneal administration of such glucan particles containing siRNA-Endo-Porter complexes to mice caused gene silencing specifically in macrophages that internalized the particles. These results from the present study indicate that specific targeting to phagocytes is mediated by the glucan, whereas Endo-Porter peptide serves both to anchor siRNA within glucan particles and to catalyse escape of siRNA from phagosomes. Thus we have developed a simplified siRNA delivery system that effectively and specifically targets phagocytes in culture or in intact mice.


Assuntos
Técnicas de Transferência de Genes , Fagócitos/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , beta-Glucanas/administração & dosagem , Células 3T3-L1 , Animais , Células COS , Chlorocebus aethiops , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Fagócitos/efeitos dos fármacos , Proteoglicanas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
20.
Nat Rev Endocrinol ; 18(8): 461-472, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35534573

RESUMO

Macrophages have diverse phenotypes and functions due to differences in their origin, location and pathophysiological context. Although their main role in the liver has been described as immunoregulatory and detoxifying, changes in macrophage phenotypes, diversity, dynamics and function have been reported during obesity-related complications such as non-alcoholic fatty liver disease (NAFLD). NAFLD encompasses multiple disease states from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocarcinoma. Obesity and insulin resistance are prominent risk factors for NASH, a disease with a high worldwide prevalence and no approved treatment. In this Review, we discuss the turnover and function of liver-resident macrophages (Kupffer cells) and monocyte-derived hepatic macrophages. We examine these populations in both steady state and during NAFLD, with an emphasis on NASH. The explosion in high-throughput gene expression analysis using single-cell RNA sequencing (scRNA-seq) within the last 5 years has revolutionized the study of macrophage heterogeneity, substantially increasing our understanding of the composition and diversity of tissue macrophages, including in the liver. Here, we highlight scRNA-seq findings from the last 5 years on the diversity of liver macrophages in homeostasis and metabolic disease, and reveal hepatic macrophage function beyond their classically described inflammatory role in the progression of NAFLD and NASH pathogenesis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA