Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400281

RESUMO

Differences in gait patterns of children with Duchenne muscular dystrophy (DMD) and typically developing (TD) peers are visible to the eye, but quantifications of those differences outside of the gait laboratory have been elusive. In this work, we measured vertical, mediolateral, and anteroposterior acceleration using a waist-worn iPhone accelerometer during ambulation across a typical range of velocities. Fifteen TD and fifteen DMD children from 3 to 16 years of age underwent eight walking/running activities, including five 25 m walk/run speed-calibration tests at a slow walk to running speeds (SC-L1 to SC-L5), a 6-min walk test (6MWT), a 100 m fast walk/jog/run (100MRW), and a free walk (FW). For clinical anchoring purposes, participants completed a Northstar Ambulatory Assessment (NSAA). We extracted temporospatial gait clinical features (CFs) and applied multiple machine learning (ML) approaches to differentiate between DMD and TD children using extracted temporospatial gait CFs and raw data. Extracted temporospatial gait CFs showed reduced step length and a greater mediolateral component of total power (TP) consistent with shorter strides and Trendelenberg-like gait commonly observed in DMD. ML approaches using temporospatial gait CFs and raw data varied in effectiveness at differentiating between DMD and TD controls at different speeds, with an accuracy of up to 100%. We demonstrate that by using ML with accelerometer data from a consumer-grade smartphone, we can capture DMD-associated gait characteristics in toddlers to teens.


Assuntos
Aprendizado Profundo , Distrofia Muscular de Duchenne , Adolescente , Humanos , Marcha , Caminhada , Acelerometria
2.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38400313

RESUMO

Estimation of temporospatial clinical features of gait (CFs), such as step count and length, step duration, step frequency, gait speed, and distance traveled, is an important component of community-based mobility evaluation using wearable accelerometers. However, accurate unsupervised computerized measurement of CFs of individuals with Duchenne muscular dystrophy (DMD) who have progressive loss of ambulatory mobility is difficult due to differences in patterns and magnitudes of acceleration across their range of attainable gait velocities. This paper proposes a novel calibration method. It aims to detect steps, estimate stride lengths, and determine travel distance. The approach involves a combination of clinical observation, machine-learning-based step detection, and regression-based stride length prediction. The method demonstrates high accuracy in children with DMD and typically developing controls (TDs) regardless of the participant's level of ability. Fifteen children with DMD and fifteen TDs underwent supervised clinical testing across a range of gait speeds using 10 m or 25 m run/walk (10 MRW, 25 MRW), 100 m run/walk (100 MRW), 6-min walk (6 MWT), and free-walk (FW) evaluations while wearing a mobile-phone-based accelerometer at the waist near the body's center of mass. Following calibration by a trained clinical evaluator, CFs were extracted from the accelerometer data using a multi-step machine-learning-based process and the results were compared to ground-truth observation data. Model predictions vs. observed values for step counts, distance traveled, and step length showed a strong correlation (Pearson's r = -0.9929 to 0.9986, p < 0.0001). The estimates demonstrated a mean (SD) percentage error of 1.49% (7.04%) for step counts, 1.18% (9.91%) for distance traveled, and 0.37% (7.52%) for step length compared to ground-truth observations for the combined 6 MWT, 100 MRW, and FW tasks. Our study findings indicate that a single waist-worn accelerometer calibrated to an individual's stride characteristics using our methods accurately measures CFs and estimates travel distances across a common range of gait speeds in both DMD and TD peers.


Assuntos
Telefone Celular , Caminhada , Criança , Humanos , Velocidade de Caminhada , Aprendizado de Máquina , Acelerometria/métodos , Marcha
3.
Sensors (Basel) ; 18(1)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29320436

RESUMO

Studies have shown that about half of the injuries sustained during long-distance running involve the knee. Cadence (steps per minute) has been identified as a factor that is strongly associated with these running-related injuries, making it a worthwhile candidate for further study. As such, it is critical for long-distance runners to minimize their risk of injury by running at an appropriate running cadence. In this paper, we present the results of a study on the feasibility and usability of RunningCoach, a mobile health (mHealth) system that remotely monitors running cadence levels of runners in a continuous fashion, among other variables, and provides immediate feedback to runners in an effort to help them optimize their running cadence.


Assuntos
Corrida , Humanos , Articulação do Joelho , Imageamento por Ressonância Magnética , Tutoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA