Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prev Med ; 177: 107774, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992976

RESUMO

Installation of technologies to remove or deactivate respiratory pathogens from indoor air is a plausible non-pharmaceutical infectious disease control strategy. OBJECTIVE: We undertook a systematic review of worldwide observational and experimental studies, published 1970-2022, to synthesise evidence about the effectiveness of suitable indoor air treatment technologies to prevent respiratory or gastrointestinal infections. METHODS: We searched for data about infection and symptom outcomes for persons who spent minimum 20 h/week in shared indoor spaces subjected to air treatment strategies hypothesised to change risk of respiratory or gastrointestinal infections or symptoms. RESULTS: Pooled data from 32 included studies suggested no net benefits of air treatment technologies for symptom severity or symptom presence, in absence of confirmed infection. Infection incidence was lower in three cohort studies for persons exposed to high efficiency particulate air filtration (RR 0.4, 95%CI 0.28-0.58, p < 0.001) and in one cohort study that combined ionisers with electrostatic nano filtration (RR 0.08, 95%CI 0.01-0.60, p = 0.01); other types of air treatment technologies and air treatment in other study designs were not strongly linked to fewer infections. The infection outcome data exhibited strong publication bias. CONCLUSIONS: Although environmental and surface samples are reduced after air treatment by several air treatment strategies, especially germicidal lights and high efficiency particulate air filtration, robust evidence has yet to emerge that these technologies are effective at reducing respiratory or gastrointestinal infections in real world settings. Data from several randomised trials have yet to report and will be welcome to the evidence base.


Assuntos
Infecções Respiratórias , Humanos , Estudos de Coortes , Infecções Respiratórias/prevenção & controle
2.
Sci Rep ; 13(1): 3893, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959189

RESUMO

Vibrio vulnificus is an opportunistic bacterial pathogen, occurring in warm low-salinity waters. V. vulnificus wound infections due to seawater exposure are infrequent but mortality rates are high (~ 18%). Seawater bacterial concentrations are increasing but changing disease pattern assessments or climate change projections are rare. Here, using a 30-year database of V. vulnificus cases for the Eastern USA, changing disease distribution was assessed. An ecological niche model was developed, trained and validated to identify links to oceanographic and climate data. This model was used to predict future disease distribution using data simulated by seven Global Climate Models (GCMs) which belong to the newest Coupled Model Intercomparison Project (CMIP6). Risk was estimated by calculating the total population within 200 km of the disease distribution. Predictions were generated for different "pathways" of global socioeconomic development which incorporate projections of greenhouse gas emissions and demographic change. In Eastern USA between 1988 and 2018, V. vulnificus wound infections increased eightfold (10-80 cases p.a.) and the northern case limit shifted northwards 48 km p.a. By 2041-2060, V. vulnificus infections may expand their current range to encompass major population centres around New York (40.7°N). Combined with a growing and increasingly elderly population, annual case numbers may double. By 2081-2100 V. vulnificus infections may be present in every Eastern USA State under medium-to-high future emissions and warming. The projected expansion of V. vulnificus wound infections stresses the need for increased individual and public health awareness in these areas.


Assuntos
Vibrioses , Vibrio vulnificus , Infecção dos Ferimentos , Humanos , Idoso , Vibrioses/epidemiologia , América do Norte
3.
Chem Phys ; 348(1-3): 152-160, 2008 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19079566

RESUMO

Green Fluorescent Proteins (GFP) and GFP-like proteins all undergo an autocatalytic post-translational modification to form a centrally located chromophore. Structural analyses of all the GFP and GFP-like proteins in the protein databank were undertaken to determine the role of the tight-turn, broken hydrogen bonding, Gly67, Glu222 and Arg96 in the biosynthesis of the imidazolone group from 65SYG67. The analysis was supplemented by computational generation of the conformation adopted by uncyclized wild-type GFP. The data analysis suggests that Arg96 interacts with the Tyr66 carbonyl, stabilizing the reduced enolate intermediate that is required for cyclization; the carboxylate of Glu 222 acts as a base facilitating, through a network of two waters, the abstraction of a hydrogen from the alpha-carbon of Tyr66; a tight-turn conformation is required for autocatalytic cyclization. This conformation is responsible for a partial reduction in the hydrogen bonding network around the chromophore-forming region of the immature protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA