Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Mass Spectrom Rev ; 42(3): 928-953, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34392555

RESUMO

Fragmentation studies of cationized amino acids and small peptides as studied using guided ion beam tandem mass spectrometry (GIBMS) are reviewed. After a brief examination of the key attributes of the GIBMS approach, results for a variety of systems are examined, compared, and contrasted. Cationization of amino acids, diglycine, and triglycine with alkali cations generally leads to dissociations in which the intact biomolecule is lost. Exceptions include most lithiated species as well as a few examples for sodiated and one example for potassiated species. Like the lithiated species, cationization by protons leads to numerous dissociation channels. Results for protonated glycine, cysteine, asparagine, diglycine, and a series of tripeptides are reviewed, along with the thermodynamic consequences that can be gleaned. Finally, the important physiological process of the deamidation of asparagine (Asn) residues is explored by the comparison of five dipeptides in which the C-terminal partner (AsnXxx) is altered. The GIBMS thermochemistry is shown to correlate well with kinetic results from solution phase studies.


Assuntos
Aminoácidos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Asparagina/química , Asparagina/metabolismo , Glicilglicina , Peptídeos , Íons
2.
Mass Spectrom Rev ; : e21830, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36644985

RESUMO

This review encompasses guided ion beam tandem mass spectrometry studies of hydrated metal dication complexes. Metals include the Group 2 alkaline earths (Mg, Ca, Sr, and Ba), late first-row transition metals (Mn, Fe, Co, Ni, Cu, and Zn), along with Cd. In all cases, threshold collision-induced dissociation experiments are used to quantitatively determine the sequential hydration energies for M2+ (H2 O)x complexes ranging in size from one to 11 water molecules. Periodic trends in these bond dissociation energies are examined and discussed. Values are compared to other experimental results when available. In addition to dissociation by simple water ligand loss, complexes at a select size (which differs from metal to metal) are also observed to undergo charge separation to yield a hydrated metal hydroxide cation and a hydrated proton. This leads to the concept of a critical size, xcrit , and the periodic trends in this value are also discussed.

3.
Phys Chem Chem Phys ; 26(30): 20216-20240, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39042103

RESUMO

In this perspective, gas-phase studies of group 1 monocations and group 12 dications with amino acids and small peptides are highlighted. Although the focus is on two experimental techniques, threshold collision-induced dissociation and infrared multiple photon dissociation action spectroscopy, these methods as well as complementary approaches are summarized. The synergistic interplay with theory, made particularly powerful by the small sizes of the systems explored and the absence of solvent and support, is also elucidated. Importantly, these gas-phase methods permit quantitative insight into the structures and thermodynamics of metal cations interacting with biological molecules. Periodic trends in how these interactions vary as the metal cations get heavier are discussed as are quantitative trends with changes in the amino acid side chain and effects of hydration. Such trends allow these results to transcend the limitations associated with the biomimetic model systems.


Assuntos
Peptídeos , Fótons , Peptídeos/química , Metais/química , Aminoácidos/química , Espectrofotometria Infravermelho , Termodinâmica , Íons/química
4.
Phys Chem Chem Phys ; 26(13): 9948-9962, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497938

RESUMO

A combination of IR multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+ (M = Fe and Co) species. These were formed by reacting laser ablated M+ ions with oxirane (ethylene oxide, c-C2H4O) in a room temperature ion trap. IRMPD spectra for the Fe and Co species are very similar and exhibit one major band. Comparison with density functional theory (DFT) and coupled cluster with single and double excitations (CCSD) calculations allows assignment of the spectra to MCH2+ carbene structures. For these 3d transition metal systems, experimental IRMPD spectra compare relatively poorly with DFT calculated IR spectra, but CCSD calculated spectra are a much better match primarily because the M-C stretch gains significant intensity. The origins of this behavior are explored in some detail. The present results are also compared to previous results for the 4d and 5d congeners and the periodic trends in these structures are evaluated.

5.
Phys Chem Chem Phys ; 26(15): 11445-11458, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572552

RESUMO

A combination of infrared multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+ (M = Ru and Rh) species. These ions were formed by reacting laser ablated M+ ions with oxirane (ethylene oxide, c-C2H4O) in a room-temperature ion trap. IRMPD spectra for the Ru species exhibit one major band and two side bands, whereas spectra for the Rh species contain more distinct bands. Comparison with density functional theory (DFT), coupled-cluster (CCSD), and equation-of-motion spin-flip CCSD (EOM-SF-CCSD) calculations allows assignment of the [M,C,2H]+ structures. For the spectrum of [Ru,C,2H]+, a combination of HRuCH+ and RuCH2+ structures reproduces the observed spectrum at all levels of theory. The well-resolved spectrum of [Rh,C,2H]+ could not be assigned unambiguously to any calculated structure using DFT approaches. The EOM-SF-CCSD calculations showed that the ground-state surface has multireference electronic character, and symmetric carbenes in both the 1A1 and 3A2 states are needed to reproduce the observed spectrum.

6.
J Phys Chem A ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230581

RESUMO

Cerium (Ce) oxide, carbide, and carbonyl cation bond energies and the exothermicity of the Ce chemi-ionization (CI) reaction with atomic oxygen were investigated using guided-ion beam tandem mass spectrometry (GIBMS). The kinetic energy dependent product cross sections for reactions of Ce+ with O2, CO, and CO2 and CeO+ with O2, CO, Xe, and Ar were measured using GIBMS. For the reactions of Ce+ with O2 and CO2, CeO+ is formed through an exothermic reaction, whereas CeO+ formation is endothermic in the reaction with CO. This reaction also forms CeC+ and CeCO+ is formed in the reaction of Ce+ with CO2, both in endothermic processes. Reactions of CeO+ with all four gases led to endothermic collision-induced dissociation as well as exchange reactions to form CeO2+ for the O2 and CO reactants. Bond dissociation energies (BDEs) at 0 K were determined through analyses of the kinetic energy dependent cross sections for all endothermic reactions. We determined that the BDEs of CeO+, CeC+, and CeCO+ are 8.46 ± 0.15, 3.93 ± 0.16, and ≥0.25 ± 0.07 eV, respectively, where the CeO+ BDE is a weighted average of 6 independent 0 K threshold measurements. The CeO+ BDE is combined with the ionization energy (IE) of Ce to determine an exothermicity of 2.91 ± 0.15 eV for the Ce + O → CeO+ + e- chemi-ionization reaction. Combined with neutral BDEs from the literature, the thermochemistry determined here also provides IE(CeO) = 5.03 ± 0.12 eV and IE(CeC) = 6.50 ± 0.16 eV. Theoretical calculations for ground and some excited states were performed for CeO+, CeC+, and CeCO+ to provide insight into the bonding and a comparison with the experimentally determined BDEs for each molecule.

7.
J Phys Chem A ; 128(32): 6658-6667, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39083656

RESUMO

IR multiple-photon dissociation (IRMPD) action spectroscopy is combined with quantum chemical calculations to examine the [M,C,2H]+ species for the early 4d metals, M = Zr and Nb. These ions were formed by reacting laser ablated M+ ions with cyclopropane (c-C3H6) in a molecular beam apparatus. Both IRMPD spectra exhibit one major band near 700 cm-1 and a second weaker band at about twice that wavenumber, more evident when irradiated in focus. The [Nb,C,2H]+ species also has a sharp band at 800 cm-1. Comparison with B3LYP calculations allow assignment of the [M,C,2H]+ structures to agostic carbenes, which is similar to the structures found for the 5d analogues, WCH2+ and TaCH2+. A molecular orbital analysis traces the reasons for the agostic deformation from a classic C2v symmetric carbene.

8.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38726931

RESUMO

The kinetic energy dependence of the title reaction is examined using guided ion beam tandem mass spectrometry. Because this reaction is spin-forbidden, crossings between octet and sextet hypersurfaces presumably must occur. Furthermore, Sm+ must transition from a 4f66s1 configuration in the reactant to 4f55d2 in order to have the orbital occupancy required to form the triple bond in SmO+ (6Δ). Despite being strongly exothermic (∼4 eV), the reaction proceeds with low efficiency (18% ± 4%) via a barrierless process at low energies. Below ∼0.3 eV, the cross section follows a kinetic energy dependence that roughly parallels that of the collision rate for ion-dipole reactions. At higher collision energies, the reaction cross section increases until it follows the trajectory cross section closely from 3 to 5 eV, indicating that another pathway opens on the reaction hypersurface. Modeling this increase yields a threshold energy for this new pathway at 0.54 ± 0.05 eV. Theoretical potential energy surfaces that do not include spin-orbit interactions for the reaction show that there is a barrier of height 1.19 eV (MP2) or 0.49 eV [CCSD(T)] to insertion of Sm+ into the N2-O bond and that there are several places where octet and sextet surfaces can intersect and interact. By considering the distribution of spin-orbit states generated in the ion source, the internal energy of the N2O reactant, and the influence of coupling between electronic, orbital, and rotational angular momentum, the low-efficiency, exothermic behavior as well as the increase in efficiency at higher energies can plausibly be explained.

9.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38647300

RESUMO

A guided ion beam tandem mass spectrometer was used to study the reactions of U+ with N2 and NO. Reaction cross sections were measured over a wide range of energy for both systems. In each reaction, UN+ is formed by an endothermic process, thereby enabling the direct measurement of the threshold energy and determination of the UN+ bond dissociation energy. For the reaction of U+ + N2, a threshold energy (E0) of 4.02 ± 0.11 eV was measured, leading to D0 (UN+) = 5.73 ± 0.11 eV. The reaction of U+ + NO yields UO+ through an exothermic, barrierless process that proceeds with 94 ± 23% efficiency at the lowest energy. Analysis of the endothermic UN+ cross section in this reaction provides E0 = 0.72 ± 0.11 eV and, therefore, D0 (UN+) = 5.78 ± 0.11 eV. Averaging the values obtained from both reactions, we report D0 (UN+) = 5.76 ± 0.13 eV as our best value (uncertainty of two standard deviations). Combined with precise literature values for the ionization energies of U and UN, we also derive D0 (UN) = 5.86 ± 0.13 eV. Both bond dissociation energies agree well with high-level theoretical treatments in the literature. The formation of UN+ in reaction of U+ with NO also exhibits a considerable increase in reaction probability above ∼3 eV. Theory suggests that this may be consistent with the formation of UN+ in excited quintet spin states, which we hypothesize are dynamically favored because the number of 5f electrons in reactants and products is conserved.

10.
Inorg Chem ; 62(6): 2672-2679, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716284

RESUMO

Following electrospray ionization, it is common for analytes to enter the gas phase accompanied by a charge-carrying ion, and in most cases, this addition is required to enable detection in the mass spectrometer. These small charge carriers may not be influential in solution but can markedly tune the analyte properties in the gas phase. Therefore, measuring their relative influence on the target molecule can assist our understanding of the structure and stability of the analyte. As the formed adducts are usually distinguishable by their mass, differences in the behavior of the analyte resulting from these added species (e.g., structure, stability, and conformational dynamics) can be easily extracted. Here, we use ion mobility mass spectrometry, supported by density functional theory, to investigate how charge carriers (H+, Na+, K+, and Cs+) as well as water influence the disassembly, stability, and conformational landscape of the homometallic ring [Cr8F8(O2CtBu)16] and the heterometallic rotaxanes [NH2RR'][Cr7MF8(O2CtBu)16], where M = MnII, FeII, CoII, NiII, CuII, ZnII, and CdII. The results yield new insights on their disassembly mechanisms and support previously reported trends in cavity size and transition metal properties, demonstrating the potential of adduct ion studies for characterizing metallosupramolecular complexes in general.

11.
J Phys Chem A ; 127(46): 9641-9653, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37957118

RESUMO

In this Featured Article, I reflect on over 40 years of guided ion beam tandem mass spectrometry (GIBMS) studies involving atomic metal cations and their clusters throughout the periodic table. Studies that have considered the role of spin conservation (or lack thereof) are a primary focus with a quantitative assessment of the effects examined. A need for state-specific studies of heavier elements is noted, as is a more quantitative assessment of spin-orbit interactions in reactivity. Because GIBMS experiments explicitly evaluate the kinetic energy dependence of reactions over a wide range, several interesting and unusual observations are highlighted. More detailed studies of such unusual reaction events would be welcome. Activation of C-H bonds and ensuing C-C coupling events are reviewed, with future work encouraged. Finally, studies of lanthanides and actinides are examined with an eye on understanding the role of f orbitals in the chemistry, both as participants (or not) in the bonding and as sources/sinks of electron density. This area seems to be ripe for more quantitative experiments.

12.
J Phys Chem A ; 127(16): 3560-3569, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37053556

RESUMO

The aromatic amino acids (AAA), phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), were cationized with ZnCl+ and CdCl+, and the complexes were evaluated using infrared multiple photon dissociation (IRMPD) action spectroscopy. Specifically, the ZnCl+(Phe), CdCl+(Phe), ZnCl+(Tyr), CdCl+(Tyr), and ZnCl+(Trp) species were examined because the CdCl+(Trp) IRMPD spectrum is available in the literature. Several low-energy conformers for all complexes were found using quantum chemical calculations, and their simulated vibrational spectra were compared to the experimental IRMPD spectra to identify dominant isomers formed. In the case of MCl+(Phe) and MCl+(Tyr), these comparisons indicated the dominant binding motif is a tridentate structure, where the metal atom coordinates with the backbone amino nitrogen and carbonyl oxygen, as well as the aryl ring. These observations are consistent with the predicted ground states at the B3LYP, B3P86, B3LYP-GD3BJ, and MP2 levels of theory. For the ZnCl+(Trp) system, the experimental spectrum indicates a similar binding motif, with the zinc atom coordinating with the backbone nitrogen and carbonyl oxygen and either the pyrrole ring or the benzene ring of the indole side chain. These observations are consistent with the predicted low-lying conformers identified by the aforementioned levels of theory, with the B3LYP and B3P86 levels predicting the metal-pyrrole ring interaction is more favorable than the metal-benzene ring interactions and the opposite at the B3LYP-GD3BJ and MP2 levels.


Assuntos
Cádmio , Zinco , Zinco/química , Cádmio/química , Aminoácidos Aromáticos , Benzeno , Espectrofotometria Infravermelho/métodos , Fenilalanina/química , Triptofano/química , Tirosina/química , Nitrogênio , Oxigênio
13.
J Phys Chem A ; 127(1): 169-180, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36563115

RESUMO

Guided ion beam tandem mass spectrometry (GIBMS) was used to measure the kinetic energy dependent product ion cross sections for reactions of the lanthanide metal dysprosium cation (Dy+) with O2, SO2, and CO and reactions of DyO+ with CO, O2, and Xe. DyO+ is formed through an exothermic process when Dy+ reacts with O2, whereas all other processes observed are found to be endothermic. The kinetic energy dependences of these cross sections were analyzed to yield 0 K bond dissociation energies (BDEs) for DyO+, DyC+, DyS+, DyO2+, and DySO+. The 0 K BDE for DyO+ is determined to be 5.60 ± 0.02 eV from the weighted average of six independent thresholds, which are dominated by the slightly endothermic reaction of Dy+ with SO2. Combined with the well-established Dy ionization energy (IE), this value indicates that the chemi-ionization reaction, Dy + O → DyO+ + e-, is endothermic by 0.33 ± 0.02 eV. Theoretical BDEs for Dy+-O, Dy+-C, Dy+-S, ODy+-O, and Dy+-SO were calculated at several levels of theory and basis sets for comparison with experiment with reasonable agreement achieved.

14.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38149740

RESUMO

A guided ion beam tandem mass spectrometer was employed to study the reactions of U+ + CO2, UO+ + O2, and the reverse of the former, UO+ + CO. Reaction cross sections as a function of kinetic energy over about a three order of magnitude range were studied for all systems. The reaction of U+ + CO2 proceeds to form UO+ + CO with an efficiency of 118% ± 24% as well as generating UO2+ + C and UCO+ + O. The reaction of UO+ + O2 forms UO2+ in an exothermic, barrierless process and also results in the collision-induced dissociation of UO+ to yield U+. In the UO+ + CO reaction, the formation of UO2+ in an endothermic process is the dominant reaction, but minor products of UCO+ + O and U+ + (O + CO) are also observed. Analysis of the kinetic energy dependences observed provides the bond energies, D0(U+-O) = 7.98 ± 0.22 and 8.05 ± 0.14 eV, D0(U+-CO) = 0.73 ± 0.13 eV, and D0(OU+-O) = 7.56 ± 0.12 eV. The values obtained for D0(U+-O) and D0(OU+-O) agree well with the previously reported literature values. To our knowledge, this is the first experimental measurement of D0(U+-CO). An analysis of the oxide bond energies shows that participation of 5f orbitals leads to a substantial increase in the thermodynamic stability of UO2+ relative to ThO2+ and especially transition metal dioxide cations.

15.
J Am Chem Soc ; 144(49): 22528-22539, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36459680

RESUMO

Understanding the fundamental reactivity of polymetallic complexes is challenging due to the complexity of their structures with many possible bond breaking and forming processes. Here, we apply ion mobility mass spectrometry coupled with density functional theory to investigate the disassembly mechanisms and energetics of a family of heterometallic rings and rotaxanes with the general formula [NH2RR'][Cr7MF8(O2CtBu)16] with M = MnII, FeII, CoII, NiII, CuII, ZnII, CdII. Our results show that their stability can be tuned both by altering the d-metal composition in the macrocycle and by the end groups of the secondary ammonium cation [NH2RR']+. Ion mobility probes the conformational landscape of the disassembly process from intact complex to structurally distinct isobaric fragments, providing unique insights to how a given divalent metal tunes the structural dynamics.


Assuntos
Rotaxanos , Metais/química , Conformação Molecular , Cátions Bivalentes
16.
Inorg Chem ; 61(40): 15936-15952, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36166214

RESUMO

Collision-induced dissociation (CID) of [Th,xC,xO]+, x = 3-6, with Xe is performed using a guided ion beam tandem mass spectrometer (GIBMS). Products are formed exclusively by the loss of CO ligands. Analyses of the kinetic energy-dependent CID product cross sections yield bond dissociation energies (BDEs) of (CO)x-1Th+-CO at 0 K as 1.09 ± 0.05, 0.82 ± 0.07, 0.63 ± 0.05, and 0.70 ± 0.05 eV, respectively. Different structures of [Th,xC,xO]+ were explored using various electronic structure methods, and BDEs for CO ligand loss from precursor [Th,xC,xO]+ complexes were computed. Both experimental and theoretical results corroborate that the structures of [Th,xC,xO]+, x = 3-6, formed experimentally are homoleptic thorium cation carbonyl complexes, Th+(CO)x. The nonmonotonic trend in experimental BDEs is reproduced theoretically, although ambiguities in the spin states of the x = 4-6 complexes (doublet or quartet) remain. BDEs calculated at the coupled cluster with single, double, and perturbative triple excitations (CCSD(T))/cc-pVXZ//B3LYP/cc-PVXZ (X = T and Q) level and a complete basis set (CBS) extrapolation agree reasonably well with the experimental values for all complexes. Thorium oxide ketenylidene carbonyl cations, OTh+CCO(CO)y, y = 1-4, were calculated to be the most stable structures of [Th,xC,xO]+, x = 3-6, respectively; however, these are not observed in our experiment. Potential energy profiles (PEPs) having either quartet or doublet spin calculated at the B3LYP/cc-pVQZ level suggest that the failure to observe OTh+CCO(CO)y, y = 1-4, is the result of a barrier corresponding to the C-C bond formation, making the formation of OTh+CCO(CO)y inaccessible kinetically under the present experimental conditions.

17.
Inorg Chem ; 61(21): 8168-8181, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35536874

RESUMO

Reactions of CO2 with Th+ have been studied using guided ion beam tandem mass spectrometry (GIBMS) and with An+ (An+ = Th+, U+, Pu+, and Am+) using triple quadrupole inductively coupled plasma mass spectrometry (QQQ-ICP-MS). Additionally, the reactions ThO+ + CO and ThO+ + CO2 were examined using GIBMS. Modeling the kinetic energy-dependent GIBMS data allowed the determination of bond dissociation energies (BDEs) for D0(Th+-O) and D0(OTh+-O) that are in reasonable agreement with previous GIBMS measurements. The QQQ-ICP-MS reactions were studied at higher pressures where multiple collisions between An+ and the neutral CO2 occur. As a consequence, both AnO+ and AnO2+ products were observed for all An+ except Am+, where only AmO+ was observed. The relative abundances of the observed monoxides compared to the dioxides are consistent with previous reports of the AnOn+ (n = 1, 2) BDEs. A comparison of the periodic trends of the group 4 transition metal, lanthanide (Ln), and actinide atomic cations in reactions with CO2 (a formally spin-forbidden reaction for most M+ ground states) and O2 (a spin-unrestricted reaction) indicates that spin conservation plays a minor role, if any, for the heavier Ln+ and An+ metals. Further correlation of Ln+ and An+ + CO2 reaction efficiencies with the promotion energy (Ep) to the first electronic state with two valence d-electrons (Ep(5d2) for Ln+ and Ep(6d2) for An+) indicates that the primary limitation in the activation of CO2 is the energetic cost to promote from the electronic ground state of the atomic metal ion to a reactive state.

18.
Inorg Chem ; 61(29): 11252-11260, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35819891

RESUMO

We spectroscopically investigated the activation products resulting from reacting one and multiple methane molecules with Pt+ ions. Pt+ ions were formed by laser ablation of a metal target and were cooled to the electronic ground state in a supersonic expansion. The ions were then transferred to a room temperature ion trap, where they were reacted with methane at various partial pressures in an argon buffer gas. Product masses observed were [Pt,C,2H]+, [Pt,2C,4H]+, [Pt,4C,8H]+, and [Pt,2C,O,6H]+, which were mass-isolated and characterized using infrared multiple-photon dissociation (IRMPD) spectroscopy employing the free electron laser for intra-cavity experiments (FELICE). The spectra for [Pt,2C,4H]+ and [Pt,4C,8H]+ have several well-defined bands and, when compared to density functional theory-calculated spectra for several possible product structures, lead to unambiguous assignments to species with ethene ligands, proving Pt+-mediated C-C coupling involving up to four methane molecules. These findings contrast with earlier experiments where Pt+ ions were reacted in a flow-tube type reaction channel at significantly higher pressures of helium buffer gas, resulting in the formation of a Pt(CH3)2+ product. Our DFT calculations show a reaction barrier of +0.16 eV relative to the PtCH2+ + CH4 reactants that are required for C-C coupling. The different outcomes in the two experiments suggest that the higher pressure in the earlier work could kinetically trap the dimethyl product, whereas the lower pressure and longer residence times in the ion trap permit the reaction to proceed, resulting in ethene formation and dihydrogen elimination.

19.
Phys Chem Chem Phys ; 24(2): 842-853, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908066

RESUMO

Collision-induced dissociation (CID) of [Th,2C,2O]+ with Xe is performed using a guided ion beam tandem mass spectrometer (GIBMS). The only products observed are ThCO+ and Th+ by sequential loss of CO ligands. The experimental findings and theoretical calculations support that the structure of [Th,2C,2O]+ is the bent homoleptic thorium dicarbonyl cation, Th+(CO)2, having quartet spin, which is both thermodynamically and kinetically stable enough in the gas phase to be observed in our GIBMS instrument. Analysis of the kinetic energy-dependent cross sections for this CID reaction yields the first experimental determination of the bond dissociation energy (BDE) of (CO)Th+-CO at 0 K as 1.05 ± 0.09 eV. A theoretical BDE calculated at the CCSD(T) level with cc-pVXZ (X = T and Q) basis sets and a complete basis set (CBS) extrapolation is in very good agreement with the experimental result. Although the doublet spin bent thorium oxide ketenylidene cation, OTh+CCO, is calculated to be the most thermodynamically stable structure, it is not observed in our experiment where [Th,2C,2O]+ is formed by association of Th+ and CO in a direct current discharge flow tube (DC/FT) ion source. Potential energy profiles of both quartet and doublet spin are constructed to elucidate the isomerization mechanism of Th+(CO)2 to OTh+CCO. The failure to observe OTh+CCO is attributed to a barrier associated with C-C bond formation, which makes OTh+CCO kinetically inaccessible under our experimental conditions. Chemical bonding patterns in low-lying states of linear and bent Th+(CO)2 and OTh+CCO isomers are also investigated.

20.
Phys Chem Chem Phys ; 24(37): 22950-22959, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36125205

RESUMO

The gas-phase structures of cationized glycine (Gly), including complexes with Li+, Na+, K+, Rb+, and Cs+, are examined using infrared multiple-photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser, in conjunction with ab initio calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) for the Li+, Na+, and K+ complexes and at B3LYP/def2TZVP for the Rb+ and Cs+ complexes. Single-point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set for Li+, Na+, K+ and the def2TZVPP basis set for Rb+ and Cs+. The Li+ and Na+ complexes are identified as metal cation coordination to the amino nitrogen and carbonyl oxygen, [N,CO]-tt, although Na+(Gly) may have contributions from additional structures. The heavier metal cations coordinate to either the carbonyl oxygen, [CO]-cc, or the carbonyl oxygen and hydroxy oxygen, [CO,OH]-cc, with the former apparently preferred for Rb+ and Cs+ and the latter for K+. These two structures reside in a double-well potential and different levels of theory predict very different relative stabilities. Some experimental evidence is provided that MP2(full) theory provides the most accurate relative energies.


Assuntos
Glicina , Metais Alcalinos , Cátions/química , Glicina/química , Metais Alcalinos/química , Conformação Molecular , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA