Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 119: 230-236, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30144754

RESUMO

Access to affordable and field deployable diagnostics are key barriers to the control and eradication of many endemic and emerging infectious diseases. While cost, accuracy, and usability have all improved in recent years, there remains a pressing need for even less expensive and more scalable technologies. To that end, we explored new methods to inexpensively produce and couple protein-based biosensing molecules (affinity reagents) with scalable electrochemical sensors. Previous whole-cell constructs resulted in confounding measurements in clinical testing due to significant cross-reactivity when probing for host-immune (antibody) response to infection. To address this, we developed two complimentary strategies based on either the release of surface displayed or secretion of fusion proteins. These dual affinity biosensing elements couple antibody recognition (using antigen) and sensor surface adhesion (using gold-binding peptide-GBP) to allow single-step reagent production, purification, and biosensor assembly. As a proof-of-concept, we developed Hepatitis C virus (HCV)-core antigen-GBP fusion proteins. These constructs were first tested and optimized for consistent surface adhesion then the assembled immunosensors were tested for cross-reactivity and evaluated for performance in vitro. We observed loss of function of the released reagents while secreted constructs performed well in in vitro testing with 2 orders of dynamic range, and a limit of detection of 32 nM. Finally, we validated the secreted platform with clinical isolates (n = 3) with statistically significant differentiation of positive vs. non-infected serum (p < 0.0001) demonstrating the ability to clearly distinguish HCV positive and negative clinical samples.


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Hepatite C/diagnóstico , Antígenos Virais/metabolismo , Hepacivirus , Humanos , Limite de Detecção , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão
2.
Biochemistry ; 39(45): 13760-71, 2000 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-11076515

RESUMO

Recent evidence indicates that the prion protein (PrP) plays a role in copper metabolism in the central nervous system. The N-terminal region of human PrP contains four sequential copies of the highly conserved octarepeat sequence PHGGGWGQ spanning residues 60-91. This region selectively binds divalent copper ions (Cu(2+)) in vivo. To elucidate the specific mode and site of binding, we have studied a series of Cu(2+)-peptide complexes composed of 1-, 2-, and 4-octarepeats and several sub-octarepeat peptides, by electron paramagnetic resonance (EPR, conventional X-band and low-frequency S-band) and circular dichroism (CD) spectroscopy. At pH 7.45, two EPR active binding modes are observed where the dominant mode appears to involve coordination of three nitrogens and one oxygen to the copper ion, while in the minor mode two nitrogens and two oxygens coordinate. ESEEM spectra demonstrate that the histidine imidazole contributes one of these nitrogens. The truncated sequence HGGGW gives EPR and CD that are indistinguishable from the dominant binding mode observed for the multi-octarepeat sequences and may therefore comprise the fundamental Cu(2+) binding unit. Both EPR and CD titration experiments demonstrate rigorously a 1:1 Cu(2+)/octarepeat binding stoichiometry regardless of the number of octarepeats in a given peptide sequence. Detailed spin integration of the EPR signals demonstrates that all of the bound Cu(2+) is detected thereby ruling out strong exchange coupling that is often found when there is imidazolate bridging between paramagnetic metal centers. A model consistent with these data is proposed in which Cu(2+) is bound to the nitrogen of the histidine imidazole side chain and to two nitrogens from sequential glycine backbone amides.


Assuntos
Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/química , Sequência de Aminoácidos , Sítios de Ligação , Cátions Bivalentes , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Dados de Sequência Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/síntese química , Proteínas PrPC/metabolismo , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA