Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Protein Expr Purif ; 193: 106058, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114376

RESUMO

Neurotrophin signaling pathways are one of the major cascades in neuronal development and involved in many key processes including proliferation, differentiation, apoptosis, synaptic plasticity, axonal growth. In addition to the main classes of neurotrophin receptors, Trk and P75NTR, there are many auxiliary proteins, which can also bind neurotrophins and regulate the signaling pathways. The versatility of interactions between them could explain multiple and completely opposite biological outcomes such as cell survival or apoptosis. Membrane protein SorCS2, a vacuolar protein sorting 10 protein-domain receptor, interacts with P75NTR and controls the activity of Trk receptors. The abnormal functioning of SorCS2 is associated with neurodegenerative diseases, such as Alzheimer's and Huntington's disease. But the mechanism of SorCS2 activation and basis of the interaction with P75NTR has remained elusive. Herein, we describe two efficient approaches for the intracellular domain of the SorCS2 production employing bacterial and cell-free expression systems, as well as purification and refolding protocols. Finally, we characterized the purified protein by DLS and NMR and demonstrated that the protein sample is suitable for structural studies.


Assuntos
Fatores de Crescimento Neural , Transdução de Sinais , Apoptose , Sobrevivência Celular , Fatores de Crescimento Neural/metabolismo , Transporte Proteico
2.
Langmuir ; 34(28): 8302-8313, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29924628

RESUMO

Isotropic bicelles are a widely used membrane mimetic for structural studies of membrane proteins and their transmembrane domains. Simple and cheap in preparation, they contain a patch of lipid bilayer that reproduces the native environment of membrane proteins. Despite the obvious power of bicelles in reproducing the various kinds of environments, the vast majority of structural studies employ the single lipid/detergent system. On the other hand, even if the alternative bicelle composition is used, the properties of mixtures are not characterized, and the mere presence of lipid bilayer and discoidal shape of bicelle particles is not confirmed. Here we present an extensive investigation of various bicellar mixtures and describe the behavior of bicelles with lipids other than classical DMPC, namely sphingomyelins (SM), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), phosphatidylserines (PS), and cholesterol. These lipids are rarely used in modern structural biology, but can help a lot in understanding the influence of the membrane composition on the properties of both integral and peripheral membrane proteins. Additionally, the ability of diheptanoylphosphatidylcholine (DH7PC) to serve as a rim-forming agent was investigated. We followed the phase transitions as revealed by 31P NMR and size of particles measured by 1H NMR diffusion as the criteria of the proper morphology and structure of bicelles. As an outcome, we state that SM exclusively, and PG/PS in mixtures with zwitterionic lipids can form small isotropic bicelles, which reproduce the key features of lipid behavior in bilayers. Mixtures, containing exclusively the anionic lipids, fail to reveal the lipid phase transition and do not follow the size predicted for the ideal bicelle particles. PE and DH7PC are the unwanted components of bicellar mixtures, and cholesterol can be added to bicelles, however, with certain precautions. In combination with our several most recent works, this study provides a practical guide for the preparation of small isotropic bicelles.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Difusão , Espectroscopia de Ressonância Magnética , Proteínas de Membrana
3.
Biochim Biophys Acta Biomembr ; 1859(3): 493-506, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28065835

RESUMO

Voltage-gated Na+ channels are essential for the functioning of cardiovascular, muscular, and nervous systems. The α-subunit of eukaryotic Na+ channel consists of ~2000 amino acid residues and encloses 24 transmembrane (TM) helices, which form five membrane domains: four voltage-sensing (VSD) and one pore domain. The structural complexity significantly impedes recombinant production and structural studies of full-sized Na+ channels. Modular organization of voltage-gated channels gives an idea for studying of the isolated second VSD of human skeletal muscle Nav1.4 channel (VSD-II). Several variants of VSD-II (~150a.a., four TM helices) with different N- and C-termini were produced by cell-free expression. Screening of membrane mimetics revealed low stability of VSD-II samples in media containing phospholipids (bicelles, nanodiscs) associated with the aggregation of electrically neutral domain molecules. The almost complete resonance assignment of 13C,15N-labeled VSD-II was obtained in LPPG micelles. The secondary structure of VSD-II showed similarity with the structures of bacterial Na+ channels. The fragment of S4 TM helix between the first and second conserved Arg residues probably adopts 310-helical conformation. Water accessibility of S3 helix, observed by the Mn2+ titration, pointed to the formation of water-filled crevices in the micelle embedded VSD-II. 15N relaxation data revealed characteristic pattern of µs-ms time scale motions in the VSD-II regions sharing expected interhelical contacts. VSD-II demonstrated enhanced mobility at ps-ns time scale as compared to isolated VSDs of K+ channels. These results validate structural studies of isolated VSDs of Na+ channels and show possible pitfalls in application of this 'divide and conquer' approach.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.4/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Sistema Livre de Células , Glicolipídeos/química , Humanos , Fosfatos de Inositol/química , Manganês/química , Micelas , Músculo Esquelético/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência
4.
J Biomol NMR ; 69(3): 165-179, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29063258

RESUMO

In the case of soluble proteins, chemical shift mapping is used to identify the intermolecular interfaces when the NOE-based calculations of spatial structure of the molecular assembly are impossible or impracticable. However, the reliability of the membrane protein interface mapping based on chemical shifts or other relevant parameters was never assessed. In the present work, we investigate the predictive power of various NMR parameters that can be used for mapping of helix-helix interfaces in dimeric TM domains. These parameters are studied on a dataset containing three structures of helical dimers obtained for two different proteins in various membrane mimetics. We conclude that the amide chemical shifts have very little predictive value, while the methyl chemical shifts could be used to predict interfaces, though with great care. We suggest an approach based on conversion of the carbon NMR relaxation parameters of methyl groups into parameters of motion, and one of such values, the characteristic time of methyl rotation, appears to be a reliable sensor of interhelix contacts in transmembrane domains. The carbon NMR relaxation parameters of methyl groups can be measured accurately and with high sensitivity and resolution, making the proposed parameter a useful tool for investigation of protein-protein interfaces even in large membrane proteins. An approach to build the models of transmembrane dimers based on perturbations of methyl parameters and TMDOCK software is suggested.


Assuntos
Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos , Metilação , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína
5.
Protein Expr Purif ; 130: 13-20, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27702601

RESUMO

Cytotoxins or cardiotoxins is a group of polycationic toxins from cobra venom belonging to the 'three-finger' protein superfamily (Ly6/uPAR family) which includes small ß-structural proteins (60-90 residues) with high disulfide bond content (4-5 disulfides). Due to a high cytotoxic activity for cancer cells, cytotoxins are considered as potential anticancer agents. Development of the high-throughput production methods is required for the prospective applications of cytotoxins. Here, efficient approach for bacterial production of recombinant analogue of cytotoxin I from N. oxiana containing additional N-terminal Met-residue (rCTX1) was developed. rCTX1 was produced in the form of E. coli inclusion bodies. Refolding in optimized conditions provided ∼6 mg of correctly folded protein from 1 L of bacterial culture. Cytotoxicity of rCTX1 for C6 rat glioma cells was found to be similar to the activity of wild type CTX1. The milligram quantities of 13C,15N-labeled rCTX1 were obtained. NMR study confirmed the similarity of the spatial structures of recombinant and wild-type toxins. Additional Met residue does not perturb the overall structure of the three-finger core. The analysis of available data for different Ly6/uPAR proteins of snake and human origin revealed that efficiency of their folding in vitro is correlated with the number of proline residues in the third loop and the surface area of hydrophobic residues buried within the protein interior. The obtained data indicate that hydrophobic core is important for the folding of proteins with high disulfide bond content. Developed expression method opens new possibilities for structure-function studies of CTX1 and other related three-finger proteins.


Assuntos
Antineoplásicos , Proteínas Cardiotóxicas de Elapídeos , Elapidae/genética , Glioma/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas Cardiotóxicas de Elapídeos/biossíntese , Proteínas Cardiotóxicas de Elapídeos/genética , Proteínas Cardiotóxicas de Elapídeos/isolamento & purificação , Proteínas Cardiotóxicas de Elapídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Elapidae/metabolismo , Escherichia coli , Glioma/metabolismo , Glioma/patologia , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia
6.
Dokl Biochem Biophys ; 476(1): 316-319, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29101740

RESUMO

Low-molecular-weight compounds with anticoagulant activity were isolated from the scorpion Heterometrus laoticus venom. The determination of the structure of the isolated compounds by nuclear magnetic resonance and mass spectrometry showed that one of the isolated compounds is adenosine, and the other two are dipeptides leucyl-tryptophan and isoleucyl-tryptophan. The anticoagulant properties of adenosine, which is an inhibitor of platelet aggregation, is well known, but its presence in scorpion venom is shown for the first time. The ability of leucyl-tryptophan and isoleucyl-tryptophan to slow down blood clotting and their presence in scorpion venom are also established for the first time.


Assuntos
Anticoagulantes/química , Anticoagulantes/farmacologia , Venenos de Escorpião/química , Escorpiões , Animais , Camundongos , Peso Molecular
7.
Langmuir ; 32(26): 6624-37, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27285636

RESUMO

Structural studies of membrane proteins are of great importance and interest, with solution and solid state NMR spectroscopy being very promising tools for that task. However, such investigations are hindered by a number of obstacles, and in the first place by the fact that membrane proteins need an adequate environment that models the cell membrane. One of the most widely used and prospective membrane mimetics is isotropic bicelles. While large anisotropic bicelles are well-studied, the field of small bicelles contains a lot of "white spots". The present work reports the radii of particles and concentration of the detergents in the monomeric state in solutions of isotropic bicelles, formed by 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO), and sodium cholate, as a function of lipid/detergent ratio and temperature. These parameters were measured using (1)H NMR diffusion spectroscopy for the bicelles composed of lipids with saturated fatty chains of different length and lipids, containing unsaturated fatty acid residue. The influence of a model transmembrane protein (membrane domain of rat TrkA) on the properties of bicelles and the effect of the bicelle size and composition on the properties of the transmembrane protein were investigated with heteronuclear NMR and nuclear Overhauser effect spectroscopy. We show that isotropic bicelles that are applicable for solution NMR spectroscopy behave as predicted by the theoretical models and are likely to be bicelles rather than mixed micelles. Using the obtained data, we propose a simple approach to control the size of bicelles at low concentrations. On the basis of our results, we compared different rim-forming agents and selected CHAPS as a detergent of choice for structural studies in bicelles, if the deuteration of the detergent is not required.

8.
Biochim Biophys Acta ; 1818(3): 349-58, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22056981

RESUMO

Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems.


Assuntos
Bacillaceae/química , Lipídeos/química , Lipossomos/química , Proteínas de Membrana/química , Micelas , Dobramento de Proteína , Proteínas de Bactérias
9.
Biochemistry (Mosc) ; 78(11): 1263-71, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24460940

RESUMO

More than half of the mutations associated with familiar Alzheimer's disease have been found in the transmembrane domain of amyloid precursor protein (APP). These pathogenic mutations presumably influence the APP transmembrane domain structural and dynamic properties and result in its conformational change or/and lateral dimerization. Despite much data about the pathogenesis of Alzheimer's disease, the initial steps of the pathogenesis remain unclear so far. For the investigation of the molecular basis of Alzheimer's disease, we selected amyloid precursor protein fragment APP671-726 containing the transmembrane and metal-binding domains. This fragment is the substrate of the γ-secretase complex whose abnormal activity leads to the formation of amyloidogenic Aß42 peptides. This work for the first time describes a highly effective cell-free APP671-726 production method and improved method of bacterial synthesis. Both methods yield milligram quantities of isotope-labeled protein for structural study by high resolution NMR spectroscopy in membrane mimicking milieus.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Dimerização , Escherichia coli/metabolismo , Humanos , Marcação por Isótopo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
10.
Biochemistry (Mosc) ; 78(2): 204-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23581991

RESUMO

Human protein SLURP-1 is an endogenous neuromodulator belonging to the Ly-6/uPAR family and acting on nicotinic acetylcholine receptors. In the present work, the gene of SLURP-1 was expressed in E. coli. The bacterial systems engineered for SLURP-1 expression as fused with thioredoxin and secretion with leader peptide STII failed in the production of milligram quantities of the protein. The SLURP-1 was produced with high-yield in the form of inclusion bodies, and different methods of the protein refolding were tested. Milligram quantities of recombinant SLURP-1 and its (15)N-labeled analog were obtained. The recombinant SLURP-1 competed with (125)I-α-bungarotoxin for binding to muscle-type Torpedo californica nAChR at micromolar concentrations, indicating a partial overlap in the binding sites for SLURP-1 and α-neurotoxins on the receptor surface. NMR study revealed conformational heterogeneity of SLURP-1 in aqueous solution, which was associated with cis-trans isomerization of the Tyr39-Pro40 peptide bond. The two structural forms of the protein have almost equal population in aqueous solution, and exchange process between them takes place with characteristic time of about 4 ms. Almost complete (1)H and (15)N resonance assignment was obtained for both structural forms of SLURP-1. The secondary structure of SLURP-1 involves two antiparallel ß-sheets formed from five ß-strands and closely resembles those of three-finger snake neurotoxins.


Assuntos
Antígenos Ly/genética , Antígenos Ly/metabolismo , Receptores Nicotínicos/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sequência de Aminoácidos , Antígenos Ly/química , Ligação Competitiva , Clonagem Molecular , Escherichia coli/genética , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Dados de Sequência Molecular , Neurotransmissores/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Soluções/química , Ativador de Plasminogênio Tipo Uroquinase/química
11.
Nat Commun ; 14(1): 1503, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932058

RESUMO

Toll-like receptors (TLRs) are the important participants of the innate immune response. Their spatial organization is well studied for the ligand-binding domains, while a lot of questions remain unanswered for the membrane and cytoplasmic regions of the proteins. Here we use solution NMR spectroscopy and computer simulations to investigate the spatial structures of transmembrane and cytoplasmic juxtamembrane regions of TLR2, TLR3, TLR5, and TLR9. According to our data, all the proteins reveal the presence of a previously unreported structural element, the cytoplasmic hydrophobic juxtamembrane α-helix. As indicated by the functional tests in living cells and bioinformatic analysis, this helix is important for receptor activation and plays a role, more complicated than a linker, connecting the transmembrane and cytoplasmic parts of the proteins.


Assuntos
Receptores Toll-Like , Humanos , Membrana Celular/metabolismo , Citoplasma/metabolismo , Imunidade Inata , Receptor 5 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/metabolismo
12.
Biochim Biophys Acta ; 1808(8): 2081-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21575594

RESUMO

In present work the interaction of two TM α-helices of the ErbB3 receptor tyrosine kinase from the ErbB or HER family (residues 639-670) was studied by means of NMR spectroscopy in a membrane-mimicking environment provided by the DPC micelles. The ErbB3 TM segment appeared to form a parallel symmetric dimer in a left-handed orientation. The interaction between TM spans is accomplished via the non-standard motif and is supported by apolar contacts of bulky side chains and by stacking of aromatic rings together with π-cation interactions of Phe and Arg side chains. The investigation of the dimer--monomer equilibrium revealed thermodynamic properties of the assembly and the presence of two distinct regimes of the dimerization at low and at high peptide/detergent ratio. It was found that the detergent in case of ErbB3 behaves not as an ideal solvent, thus affecting the dimer--monomer equilibrium. Such behavior may account for the problems occurring with the refolding and stability of multispan helical membrane proteins in detergent solutions. The example of ErbB3 allows us to conclude that the thermodynamic parameters of dimerization, measured in micelles for two different helical pairs, cannot be compared without the investigation of their dependence on detergent concentration.


Assuntos
Membranas Artificiais , Micelas , Fosforilcolina/análogos & derivados , Receptor ErbB-3/química , Arginina , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fenilalanina , Fosforilcolina/química , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor ErbB-3/genética , Termodinâmica
13.
Phys Biol ; 7: 16014, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20228445

RESUMO

Membrane-spanning segments of numerous proteins (e.g. receptor tyrosine kinases) represent a novel class of pharmacologically important targets, whose activity can be modulated by specially designed artificial peptides, the so-called interceptors. Rational construction of such peptides requires understanding of the main factors driving peptide-peptide association in lipid membranes. Here we present a new method for rapid prediction of the spatial structure of transmembrane (TM) helix-helix complexes. It is based on computer simulations in membrane-like media and subsequent refinement/validation of the results using experimental studies of TM helix dimerization in a bacterial membrane by means of the ToxR system. The approach was applied to TM fragments of the ephrin receptor A1 (EphA1). A set of spatial structures of the dimer was proposed based on Monte Carlo simulations in an implicit membrane followed by molecular dynamics relaxation in an explicit lipid bilayer. The resulting models were employed for rational design of wild-type and mutant genetic constructions for ToxR assays. The computational and the experimental data are self-consistent and provide an unambiguous spatial model of the TM dimer of EphA1. The results of this work can be further used to develop new biologically active 'peptide interceptors' specifically targeting membrane domains of proteins.


Assuntos
Proteínas de Bactérias/química , Simulação por Computador , Proteínas de Ligação a DNA/química , Modelos Moleculares , Receptor EphA1/química , Fatores de Transcrição/química , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Simulação de Dinâmica Molecular , Método de Monte Carlo , Multimerização Proteica , Estrutura Secundária de Proteína , Receptor EphA1/metabolismo , Fatores de Transcrição/genética , beta-Galactosidase/química , beta-Galactosidase/metabolismo
14.
Biochemistry (Mosc) ; 75(7): 881-91, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20673212

RESUMO

To elaborate a high-performance system for expression of genes of G-protein coupled receptors (GPCR), methods of direct and hybrid expression of 17 GPCR genes in Escherichia coli and selection of strains and bacteria cultivation conditions were investigated. It was established that expression of most of the target GPCR fused with the N-terminal fragment of OmpF or Mistic using media for autoinduction provides high output (up to 50 mg/liter).


Assuntos
Escherichia coli/genética , Expressão Gênica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Clonagem Molecular , Escherichia coli/metabolismo , Humanos , Família Multigênica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
15.
Biochemistry (Mosc) ; 74(12): 1344-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19961415

RESUMO

An efficient method is described for production of membrane protein KCNE3 and its isotope labeled derivatives ((15)N-, (15)N-/13C-) in amounts sufficient for structural-functional investigations. The purified protein preparation within different detergent micelles was characterized using dynamic light scattering, CD spectroscopy, and NMR spectroscopy. It is shown that within DPC/LDAO micelles the protein is in monomeric form and acquires mainly alpha-helical conformation. The existence of cross-peaks for all glycines of the (15)N-HSQC NMR spectra as well as relatively small line widths (~20 Hz) confirm the high quality of the preparation and the possibility of obtaining structural-dynamic information on KCNE3 by high resolution heteronuclear NMR spectroscopy.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Micelas , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
16.
Biochemistry (Mosc) ; 74(10): 1142-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19916927

RESUMO

The gene for the "weak" toxin of Naja kaouthia venom was expressed in Escherichia coli. "Weak" toxin is a specific inhibitor of nicotine acetylcholine receptor, but mechanisms of interaction of similar neurotoxins with receptors are still unknown. Systems previously elaborated for neurotoxin II from venom of the cobra Naja oxiana were tested for bacterial production of "weak" toxin from N. kaouthia venom. Constructs were designed for cytoplasmic production of N. kaouthia "weak" toxin in the form of a fused polypeptide chain with thioredoxin and for secretion with the leader peptide STII. However, it became possible to obtain "weak" toxin in milligram amounts only within cytoplasmic inclusion bodies. Different approaches for refolding of the toxin were tested, and conditions for optimization of the yield of the target protein during refolding were investigated. The resulting protein was characterized by mass spectrometry and CD and NMR spectroscopy. Experiments on competitive inhibition of (125)I-labeled alpha-bungarotoxin binding to the Torpedo californica electric organ membranes containing the muscle-type nicotine acetylcholine receptor (alpha1(2)beta1gammadelta) showed the presence of biological activity of the recombinant "weak" toxin close to the activity of the natural toxin (IC(50) = 4.3 +/- 0.3 and 3.0 +/- 0.5 microM, respectively). The interaction of the recombinant toxin with alpha7 type human neuronal acetylcholine receptor transfected in the GH(4)C(1) cell line also showed the presence of activity close to that of the natural toxin (IC(50) 31 +/- 5.0 and 14.8 +/- 1.3 microM, respectively). The developed bacterial system for production of N. kaouthia venom "weak" toxin was used to obtain (15)N-labeled analog of the neurotoxin.


Assuntos
Bactérias/genética , Bungarotoxinas/genética , Venenos Elapídicos/genética , Corpos de Inclusão/genética , Animais , Bactérias/metabolismo , Bungarotoxinas/metabolismo , Clonagem Molecular , Dissulfetos/química , Venenos Elapídicos/metabolismo , Elapidae/sangue , Vetores Genéticos , Humanos , Corpos de Inclusão/química , Conformação Proteica
17.
Biochemistry (Mosc) ; 74(7): 756-65, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19747096

RESUMO

High-resolution NMR is shown to be applicable for investigation of membrane proteins and membrane-active peptides embedded into lipid-protein nanodiscs (LPNs). (15)N-Labeled K+-channel from Streptomyces lividans (KcsA) and the antibiotic antiamoebin I from Emericellopsis minima (Aam-I) were embedded in LPNs of different lipid composition. Formation of stable complexes undergoing isotropic motion in solution was confirmed by size-exclusion chromatography and (31)P-NMR spectroscopy. The 2D 1H-(15)N-correlation spectra were recorded for KcsA in the complex with LPN containing DMPC and for Aam-I in LPNs based on DOPG, DLPC, DMPC, and POPC. The spectra recorded were compared with those in detergent-containing micelles and small bicelles commonly used in high-resolution NMR spectroscopy of membrane proteins. The spectra recorded in LPN environments demonstrated similar signal dispersion but significantly increased (1)H(N) line width. The spectra of Aam-I embedded in LPNs containing phosphatidylcholine showed significant selective line broadening, thus suggesting exchange process(es) between several membrane-bound states of the peptide. (15)N relaxation rates were measured to obtain the effective rotational correlation time of the Aam-I molecule. The obtained value (approximately 40 nsec at 45 degrees C) is indicative of additional peptide motions within the Aam-I/LPN complex.


Assuntos
Proteínas de Bactérias/química , Lipídeos/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Nanoestruturas/química , Peptídeos/química , Canais de Potássio/química , Hypocreales/química , Peptaibols
18.
Eur J Med Chem ; 180: 143-153, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302447

RESUMO

The rise of antibiotic resistance has necessitated the development of alternative strategies for the treatment of infectious diseases. Antimicrobial peptides (AMPs), components of the innate immune response in various organisms, are promising next-generation drugs against bacterial infections. The ability of the medicinal leech Hirudo medicinalis to store blood for months with little change has attracted interest regarding the identification of novel AMPs in this organism. In this study, we employed computational algorithms to the medicinal leech genome assembly to identify amino acid sequences encoding potential AMPs. Then, we synthesized twelve candidate AMPs identified by the algorithms, determined their secondary structures, measured minimal inhibitory concentrations against three bacterial species (Escherichia coli, Bacillus subtilis, and Chlamydia thrachomatis), and assayed cytotoxic and haemolytic activities. Eight of twelve candidate AMPs possessed antimicrobial activity, and only two of them, 3967 (FRIMRILRVLKL) and 536-1 (RWRLVCFLCRRKKV), exhibited inhibition of growth of all tested bacterial species at a minimal inhibitory concentration of 10 µmol. Thus, we evidence the utility of the developed computational algorithms for the identification of AMPs with low toxicity and haemolytic activity in the medicinal leech genome assembly.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana/efeitos dos fármacos , Algoritmos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlamydia/efeitos dos fármacos , Chlamydia/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hirudo medicinalis , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
19.
Biochim Biophys Acta Biomembr ; 1860(12): 2486-2498, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30279150

RESUMO

The interaction between the secondary structure elements is the key process, determining the spatial structure and activity of a membrane protein. Transmembrane (TM) helix-helix interaction is known to be especially important for the function of so-called type I or bitopic membrane proteins. In the present work, we present the approach to study the helix-helix interaction in the TM domains of membrane proteins in various lipid environment using solution NMR spectroscopy and phospholipid bicelles. The technique is based on the ability of bicelles to form particles with the size, depending on the lipid/detergent ratio. To implement the approach, we report the experimental parameters of "ideal bicelle" models for four kinds of zwitterionic phospholipids, which can be also used in other structural studies. We show that size of bicelles and type of the rim-forming detergent do not affect substantially the spatial structure and stability of the model TM dimer. On the other hand, the effect of bilayer thickness on the free energy of the dimer is dramatic, while the structure of the protein is unchanged in various lipids with fatty chains having a length from 12 to 18 carbon atoms. The obtained data is analyzed using the computer simulations to find the physical origin of the observed effects.


Assuntos
Simulação por Computador , Proteínas de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Mapeamento de Interação de Proteínas , Sequência de Aminoácidos , Detergentes/química , Dimerização , Micelas , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Estabilidade Proteica , Estrutura Secundária de Proteína
20.
Sci Rep ; 6: 30698, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485575

RESUMO

Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3ß2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a 'three-finger' fold of SLURP-2 with a conserved ß-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, ß2, and ß4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4ß2 and α3ß2-nAChRs (IC50 ~0.17 and >3 µM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 µM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3ß2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the 'classical' orthosteric agonist/antagonist binding sites at α7 and α3ß2-nAChRs.


Assuntos
Potenciais Evocados/fisiologia , Proteínas Ligadas por GPI/metabolismo , Queratinócitos/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Animais , Sítios de Ligação/fisiologia , Células CHO , Linhagem Celular , Proliferação de Células/fisiologia , Simulação por Computador , Cricetulus , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Ressonância Magnética Nuclear Biomolecular , Oócitos/metabolismo , Células PC12 , Ligação Proteica/fisiologia , Ratos , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA