Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Cell Physiol ; 327(1): C11-C33, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38708523

RESUMO

In contrast to other types of cancers, there is no available efficient pharmacological treatment to improve the outcomes of patients suffering from major primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma. This dismal situation is partly due to the existence in these tumors of many different and synergistic mechanisms of resistance, accounting for the lack of response of these patients, not only to classical chemotherapy but also to more modern pharmacological agents based on the inhibition of tyrosine kinase receptors (TKIs) and the stimulation of the immune response against the tumor using immune checkpoint inhibitors (ICIs). This review summarizes the efforts to develop strategies to overcome this severe limitation, including searching for novel drugs derived from synthetic, semisynthetic, or natural products with vectorial properties against therapeutic targets to increase drug uptake or reduce drug export from cancer cells. Besides, immunotherapy is a promising line of research that is already starting to be implemented in clinical practice. Although less successful than in other cancers, the foreseen future for this strategy in treating liver cancers is considerable. Similarly, the pharmacological inhibition of epigenetic targets is highly promising. Many novel "epidrugs," able to act on "writer," "reader," and "eraser" epigenetic players, are currently being evaluated in preclinical and clinical studies. Finally, gene therapy is a broad field of research in the fight against liver cancer chemoresistance, based on the impressive advances recently achieved in gene manipulation. In sum, although the present is still dismal, there is reason for hope in the non-too-distant future.


Assuntos
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/imunologia , Colangiocarcinoma/patologia , Epigênese Genética/efeitos dos fármacos
2.
Semin Liver Dis ; 42(1): 87-103, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34544160

RESUMO

Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis when diagnosed at advanced stages in which curative treatments are no longer applicable. A small group of these patients may still benefit from transarterial chemoembolization. The only therapeutic option for most patients with advanced HCC is systemic pharmacological treatments based on tyrosine kinase inhibitors (TKIs) and immunotherapy. Available drugs only slightly increase survival, as tumor cells possess additive and synergistic mechanisms of pharmacoresistance (MPRs) prior to or enhanced during treatment. Understanding the molecular basis of MPRs is crucial to elucidate the genetic signature underlying HCC resistome. This will permit the selection of biomarkers to predict drug treatment response and identify tumor weaknesses in a personalized and dynamic way. In this article, we have reviewed the role of MPRs in current first-line drugs and the combinations of immunotherapeutic agents with novel TKIs being tested in the treatment of advanced HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia
3.
Pharmacol Res ; 177: 106056, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995794

RESUMO

Glucocorticoids (GCs) are widely used drugs for their anti-inflammatory and immunosuppressant effects, but they are associated with multiple adverse effects. Despite their frequent oral administration, relatively little attention has been paid to the effects of GCs on intestinal barrier function. In this review, we present a summary of the published studies on this matter carried out in animal models and cultured cells. In cultured intestinal epithelial cells, GCs have variable effects in basal conditions and generally enhance barrier function in the presence of inflammatory cytokines such as tumor necrosis factor (TNF). In turn, in rodents and other animals, GCs have been shown to weaken barrier function, with increased permeability and lower production of IgA, which may account for some features observed in stress models. When given to animals with experimental colitis, barrier function may be debilitated or strengthened, despite a positive anti-inflammatory activity. In sepsis models, GCs have a barrier-enhancing effect. These effects are probably related to the inhibition of epithelial cell proliferation and wound healing, modulation of the microbiota and mucus production, and interference with the mucosal immune system. The available information on underlying mechanisms is described and discussed.


Assuntos
Colite , Glucocorticoides , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Modelos Animais de Doenças , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Mucosa Intestinal
4.
Hepatology ; 72(3): 949-964, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31863486

RESUMO

BACKGROUND AND AIMS: A limitation for the treatment of unresectable cholangiocarcinoma (CCA) is its poor response to chemotherapy, which is partly due to reduction of intracellular levels of anticancer drugs through ATP-binding cassette (ABC) pumps. Low expression of SOX17 (SRY-box containing gene 17), a transcription factor that promotes biliary differentiation and phenotype maintenance, has been associated with cholangiocyte malignant transformation. Whether SOX17 is also involved in CCA chemoresistance is investigated in this study. APPROACH AND RESULTS: SOX17 expression in human CCA cells (EGI-1 and TFK-1) selectively potentiated cytotoxicity of SN-38, 5-fluorouracil and mitoxantrone, but not that of gemcitabine, capecitabine, cisplatin, or oxaliplatin. The analysis of the resistome by TaqMan low-density arrays revealed changes affecting primarily ABC pump expression. Single-gene quantitative real-time PCR, immunoblot, and immunofluorescence analyses confirmed that MRP3 (multidrug resistance associated protein 3), which was highly expressed in CCA human tumors, was down-regulated in SOX17-transduced CCA cells. The substrate specificity of this pump matched that of SOX17-induced in vitro selective chemosensitization. Functional studies showed lower ability of SOX17-expressing CCA cells to extrude specific MRP3 substrates. Reporter assay of MRP3 promoter (ABCC3pr) revealed that ABCC3pr activity was inhibited by SOX17 expression and SOX2/SOX9 silencing. The latter was highly expressed in CCA. Moreover, SOX2/9, but not SOX17, induced altered electrophoretic mobility of ABCC3pr, which was prevented by SOX17. The growth of CCA tumors subcutaneously implanted into immunodeficient mice was inhibited by 5-fluorouracil. This effect was enhanced by co-treatment with adenoviral vectors encoding SOX17. CONCLUSIONS: SOX9/2/17 are involved in MRP3-mediated CCA chemoresistance. Restored SOX17 expression, in addition to its tumor suppression effect, induces selective chemosensitization due to MRP3 down-regulation and subsequent intracellular drug accumulation.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas HMGB/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXF/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Hepatology ; 70(4): 1246-1261, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30972782

RESUMO

Although the multi-tyrosine kinase inhibitor sorafenib is useful in the treatment of several cancers, cholangiocarcinoma (CCA) is refractory to this drug. Among other mechanisms of chemoresistance, impaired uptake through human organic cation transporter type 1 (hOCT1) (gene SLC22A1) has been suggested. Here we have investigated the events accounting for this phenotypic characteristic and have evaluated the interest of selective gene therapy strategies to overcome this limitation. Gene expression and DNA methylation of SLC22A1 were analyzed using intrahepatic (iCCA) and extrahepatic (eCCA) biopsies (Copenhagen and Salamanca cohorts; n = 132) and The Cancer Genome Atlas (TCGA)-CHOL (n = 36). Decreased hOCT1 mRNA correlated with hypermethylation status of the SLC22A1 promoter. Treatment of CCA cells with decitabine (demethylating agent) or butyrate (histone deacetylase inhibitor) restored hOCT1 expression and increased sorafenib uptake. MicroRNAs able to induce hOCT1 mRNA decay were analyzed in paired samples of TCGA-CHOL (n = 9) and Copenhagen (n = 57) cohorts. Consistent up-regulation in tumor tissue was found for miR-141 and miR-330. High proportion of aberrant hOCT1 mRNA splicing in CCA was also seen. Lentiviral-mediated transduction of eCCA (EGI-1 and TFK-1) and iCCA (HuCCT1) cells with hOCT1 enhanced sorafenib uptake and cytotoxic effects. In chemically induced CCA in rats, reduced rOct1 expression was accompanied by impaired sorafenib uptake. In xenograft models of eCCA cells implanted in mouse liver, poor response to sorafenib was observed. However, tumor growth was markedly reduced by cotreatment with sorafenib and adenoviral vectors encoding hOCT1 under the control of the BIRC5 promoter, a gene highly up-regulated in CCA. Conclusion: The reason for impaired hOCT1-mediated sorafenib uptake by CCA is multifactorial. Gene therapy capable of selectively inducing hOCT1 in tumor cells can be considered a potentially useful chemosensitization strategy to improve the response of CCA to sorafenib.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Regulação para Baixo/genética , Fator 1 de Transcrição de Octâmero/genética , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Metilação de DNA/genética , Modelos Animais de Doenças , Resistência a Medicamentos/genética , Terapia Genética/métodos , Humanos , Immunoblotting , Masculino , RNA Mensageiro/genética , Distribuição Aleatória , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estatísticas não Paramétricas
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1444-1453, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28600147

RESUMO

One of the main difficulties in the management of patients with advanced cholangiocarcinoma (CCA) is their poor response to available chemotherapy. This is the result of powerful mechanisms of chemoresistance (MOC) of quite diverse nature that usually act synergistically. The problem is often worsened by altered MOC gene expression in response to pharmacological treatment. Since CCA includes a heterogeneous group of cancers their genetic signature coding for MOC genes is also diverse; however, several shared traits have been defined. Some of these characteristics are shared with other types of liver cancer, namely hepatocellular carcinoma and hepatoblastoma. An important goal in modern oncologic pharmacology is to develop novel strategies to overcome CCA chemoresistance either by increasing drug specificity, such as in targeted therapies aimed to inhibit receptors with tyrosine kinase activity, or to increase the amounts of active agents inside CCA cells by enhancing drug uptake or reducing efflux through export pumps. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/terapia , Colangiocarcinoma/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares/citologia , Ductos Biliares/efeitos dos fármacos , Ductos Biliares/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia Genética/métodos , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Resultado do Tratamento
7.
Biochem Pharmacol ; : 116166, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38527556

RESUMO

The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.

8.
Biochem Pharmacol ; 214: 115681, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429423

RESUMO

Although pharmacological treatment is the best option for most patients with advanced hepatocellular carcinoma (HCC), its success is very limited, partly due to reduced uptake and enhanced efflux of antitumor drugs. Here we have explored the usefulness of vectorizing drugs towards the organic anion transporting polypeptide 1B3 (OATP1B3) to enhance their efficacy against HCC cells. In silico studies (RNA-Seq data, 11 cohorts) and immunohistochemistry analyses revealed a marked interindividual variability, together with general downregulation but still expression of OATP1B3 in the plasma membrane of HCC cells. The measurement of mRNA variants in 20 HCC samples showed the almost absence of the cancer-type variant (Ct-OATP1B3) together with marked predominance of the liver-type variant (Lt-OATP1B3). In Lt-OATP1B3-expressing cells, the screening of 37 chemotherapeutical drugs and 17 tyrosine kinase receptors inhibitors (TKIs) revealed that 10 classical anticancer drugs and 12 TKIs were able to inhibit Lt-OATP1B3-mediated transport. Lt-OATP1B3-expressing cells were more sensitive than Mock parental cells (transduced with empty lentiviral vectors) to some Lt-OATP1B3 substrates (paclitaxel and the bile acid-cisplatin derivative Bamet-UD2), but not to cisplatin, which is not transported by Lt-OATP1B3. This enhanced response was abolished by competition with taurocholic acid, a known Lt-OATP1B3 substrate. Tumors subcutaneously generated in immunodeficient mice by Lt-OATP1B3-expressing HCC cells were more sensitive to Bamet-UD2 than those derived from Mock cells. In conclusion, Lt-OATP1B3 expression should be screened before deciding the use of anticancer drugs substrates of this carrier in the personalized treatment of HCC. Moreover, Lt-OATP1B3-mediated uptake must be considered when designing novel anti-HCC targeted drugs.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transportadores de Ânions Orgânicos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Cisplatino/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Humanos
9.
Cancers (Basel) ; 14(14)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35884584

RESUMO

Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.

10.
Phytomedicine ; 86: 153196, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32229058

RESUMO

BACKGROUND: A major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types. PURPOSE: Identification of novel molecules that overcome MDR by targeting ABC-transporters. METHODS: Resazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin uptake assay and an ATPase assay. ROS generation was detected using flow cytometry for the measurement of H2DCFH-DA fluorescence. Annexin/PI staining was applied for the detection of apoptosis. Bioinformatic analyses were performed using LigandScout 3.12. software and DataWarrior software. RESULTS: In our search for new molecules that selectively act against resistant phenotypes, we identified isopetasin and S-isopetasin, which are bioactive natural products from Petasites formosanus. They exerted collateral sensitivity towards leukemia cells with high P-gp expression in CEM/ADR5000 cells, compared to sensitive wild-type CCRF-CEM leukemia cells. Also, they revealed considerable activity towards breast cancer cells overexpressing breast cancer resistance protein, MDA-MB-231-BCRP clone 23. This motivated us to investigate whether the function of P-gp was inhibited. In-silico results showed the compounds bound with high affinity and interacted with key amino acid residues in P-gp . Then, we found that the two compounds increased doxorubicin accumulation in P-gp overexpressing CEM/ADR5000 by three-fold compared to cells without inhibitor. P-gp-mediated drug efflux was ATP-dependent. Isopetasin and S-isopetasin increased the ATPase activity of human P-gp in a comparable fashion as verapamil used as control P-gp inhibitor. As isopetasin and S-isopetasin exerted dual roles, first as cytotoxic compounds and then as P-gp inhibitors, we suggested that their P-gp inhibition is part of a larger complex of mechanisms to induce cell death in cancer patients. P-gp dysfunction induces mitochondrial stress to generate ATP. Upon continuing stress by P-gp inhibition, the mitochondria generate reactive oxygen species (ROS). Initially established for verapamil, this theory was validated in the present study for isopetasin and S-isopetasin, as treatment with the two candidates increased ROS levels in CEM/ADR5000 cells followed by apoptosis. CONCLUSION: Our study highlights the importance of isopetasin and S-isopetasin as novel ROS-generating and apoptosis-inducing P-gp inhibitors.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo
11.
Biochem Pharmacol ; 193: 114810, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34673012

RESUMO

A shared characteristic of many tumors is the lack of response to anticancer drugs. Multiple mechanisms of pharmacoresistance (MPRs) are involved in permitting cancer cells to overcome the effect of these agents. Pharmacoresistance can be primary (intrinsic) or secondary (acquired), i.e., triggered or enhanced in response to the treatment. Moreover, MPRs usually result in the lack of sensitivity to several agents, which accounts for diverse multidrug-resistant (MDR) phenotypes. MPRs are based on the dynamic expression of more than one hundred genes, constituting the so-called resistome. Alternative splicing (AS) during pre-mRNA maturation results in changes affecting proteins involved in the resistome. The resulting splicing variants (SVs) reduce the efficacy of anticancer drugs by lowering the intracellular levels of active agents, altering molecular targets, enhancing both DNA repair ability and defensive mechanism of tumors, inducing changes in the balance between pro-survival and pro-apoptosis signals, modifying interactions with the tumor microenvironment, and favoring malignant phenotypic transitions. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the impact of AS on MPR in cancer cells.


Assuntos
Processamento Alternativo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos
12.
Cancers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008179

RESUMO

The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.

13.
Cancers (Basel) ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751679

RESUMO

Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.

14.
Cancers (Basel) ; 12(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585893

RESUMO

The poor outcome of patients with non-surgically removable advanced hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer, is mainly due to the high refractoriness of this aggressive tumor to classical chemotherapy. Novel pharmacological approaches based on the use of inhibitors of tyrosine kinases (TKIs), mainly sorafenib and regorafenib, have provided only a modest prolongation of the overall survival in these HCC patients. The present review is an update of the available information regarding our understanding of the molecular bases of mechanisms of chemoresistance (MOC) with a significant impact on the response of HCC to existing pharmacological tools, which include classical chemotherapeutic agents, TKIs and novel immune-sensitizing strategies. Many of the more than one hundred genes involved in seven MOC have been identified as potential biomarkers to predict the failure of treatment, as well as druggable targets to develop novel strategies aimed at increasing the sensitivity of HCC to pharmacological treatments.

15.
Cancers (Basel) ; 11(3)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909445

RESUMO

The most frequent liver tumor in children is hepatoblastoma (HB), which derives from embryonic parenchymal liver cells or hepatoblasts. Hepatocellular carcinoma (HCC), which rarely affects young people, causes one fourth of deaths due to cancer in adults. In contrast, HB usually has better prognosis, but this is still poor in 20% of cases. Although more responsive to chemotherapy than HCC, the failure of pharmacological treatment used before and/or after surgical resection is an important limitation in the management of patients with HB. To advance in the implementation of personalized medicine it is important to select the best combination among available anti-HB drugs, such as platinum derivatives, anthracyclines, etoposide, tyrosine-kinase inhibitors, Vinca alkaloids, 5-fluorouracil, monoclonal antibodies, irinotecan and nitrogen mustards. This requires predicting the sensitivity to these drugs of each tumor at each time because, it should be kept in mind, that cancer chemoresistance is a dynamic process of Darwinian nature. For this goal it is necessary to improve our understanding of the mechanisms of chemoresistance involved in the refractoriness of HB against the pharmacological challenge and how they evolve during treatment. In this review we have summarized the current knowledge on the multifactorial and complex factors responsible for the lack of response of HB to chemotherapy.

16.
Clin Res Hepatol Gastroenterol ; 42(3): 182-192, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29544679

RESUMO

A characteristic shared by most frequent types of primary liver cancer, i.e., hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) in adults, and in a lesser extent hepatoblastoma (HB) mainly in children, is their high refractoriness to chemotherapy. This is the result of synergic interactions among complex and diverse mechanisms of chemoresistance (MOC) in which more than 100 genes are involved. Pharmacological treatment, although it can be initially effective, frequently stimulates the expression of MOC genes, which results in the relapse of the tumor, usually with a more aggressive and less chemosensitive phenotype. Identification of the MOC genetic signature accounting for the "resistome" present at each moment of tumor life would prevent the administration of chemotherapeutic regimens without chance of success but still with noxious side effects for the patient. Moreover, a better description of cancer cells strength is required to develop novel strategies based on pharmacological, cellular or gene therapy to overcome liver cancer chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA