RESUMO
The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and the world economy. Because approved drugs and vaccines are limited or not available, new options for COVID-19 treatment and prevention are in high demand. To identify SARS-CoV-2-neutralizing antibodies, we analyzed the antibody response of 12 COVID-19 patients from 8 to 69 days after diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days after diagnosis. Of these, 28 potently neutralized authentic SARS-CoV-2 with IC100 as low as 0.04 µg/mL, showing a broad spectrum of variable (V) genes and low levels of somatic mutations. Interestingly, potential precursor sequences were identified in naive B cell repertoires from 48 healthy individuals who were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2-neutralizing antibodies are readily generated from a diverse pool of precursors, fostering hope for rapid induction of a protective immune response upon vaccination.
Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Betacoronavirus/imunologia , COVID-19 , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Memória Imunológica , Estudos Longitudinais , Pandemias , SARS-CoV-2 , Hipermutação Somática de ImunoglobulinaRESUMO
Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.
Assuntos
Citomegalovirus , Proteínas do Envelope Viral , Recém-Nascido , Humanos , Glicoproteínas de Membrana , Anticorpos Neutralizantes , Células B de Memória , Anticorpos Antivirais , Análise de Célula ÚnicaRESUMO
BACKGROUND: Rapid antigen detection tests (RADT) are commonly used as SARS-CoV-2 diagnostic tests both by medical professionals and laypeople. However, the performance of RADT in vaccinated individuals has not been fully investigated. OBJECTIVES: RT-qPCR and rapid antigen detection testing were performed to evaluate the performance of the Standard Q COVID-19 Ag Test in detecting SARS-CoV-2 breakthrough infections in vaccinated individuals. STUDY DESIGN: Two swab specimens, one for RT-qPCR and one for RADT, were collected from vaccinated individuals in an outpatient clinic. For comparison of RADT performance in vaccinated and unvaccinated individuals, a dataset already published by this group was used as reference. RESULTS: During the delta wave, a total of 696 samples were tested with both RT-qPCR and RADT that included 692 (99.4%) samples from vaccinated individuals. Of these, 76 (11.0%) samples were detected SARS-CoV-2 positive by RT-qPCR and 45 (6.5%) samples by the Standard Q COVID-19 Ag test. Stratified by Ct values, sensitivity of the RADT was 100.0%, 94.4% and 81.1% for Ct ≤ 20 (n=18), Ct ≤ 25 (n=36) and Ct ≤ 30 (n=53), respectively. Samples with Ct values ≥ 30 (n=23) were not detected. Overall RADT specificity was 99.7% and symptom status did not affect RADT performance. Notably, RADT detected 4 out of 4 samples of probable Omicron variant infection based on single nucleotide polymorphism analysis. CONCLUSION: Our results show that RADT testing remains a valuable tool in detecting breakthrough infections with high viral RNA loads.
Assuntos
Antígenos Virais/análise , Teste Sorológico para COVID-19/normas , COVID-19 , Vacinação , COVID-19/diagnóstico , Humanos , Reprodutibilidade dos Testes , SARS-CoV-2 , Sensibilidade e EspecificidadeRESUMO
The mitochondrial integrated stress response (mitoISR) has emerged as a major adaptive pathway to respiratory chain deficiency, but both the tissue specificity of its regulation, and how mitoISR adapts to different levels of mitochondrial dysfunction are largely unknown. Here, we report that diverse levels of mitochondrial cardiomyopathy activate mitoISR, including high production of FGF21, a cytokine with both paracrine and endocrine function, shown to be induced by respiratory chain dysfunction. Although being fully dispensable for the cell-autonomous and systemic responses to severe mitochondrial cardiomyopathy, in the conditions of mild-to-moderate cardiac OXPHOS dysfunction, FGF21 regulates a portion of mitoISR. In the absence of FGF21, a large part of the metabolic adaptation to mitochondrial dysfunction (one-carbon metabolism, transsulfuration, and serine and proline biosynthesis) is strongly blunted, independent of the primary mitoISR activator ATF4. Collectively, our work highlights the complexity of mitochondrial stress responses by revealing the importance of the tissue specificity and dose dependency of mitoISR.