Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(1-2): 306-317.e16, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30503212

RESUMO

Trypanosome parasites control their virulence and spread by using quorum sensing (QS) to generate transmissible "stumpy forms" in their host bloodstream. However, the QS signal "stumpy induction factor" (SIF) and its reception mechanism are unknown. Although trypanosomes lack G protein-coupled receptor signaling, we have identified a surface GPR89-family protein that regulates stumpy formation. TbGPR89 is expressed on bloodstream "slender form" trypanosomes, which receive the SIF signal, and when ectopically expressed, TbGPR89 drives stumpy formation in a SIF-pathway-dependent process. Structural modeling of TbGPR89 predicts unexpected similarity to oligopeptide transporters (POT), and when expressed in bacteria, TbGPR89 transports oligopeptides. Conversely, expression of an E. coli POT in trypanosomes drives parasite differentiation, and oligopeptides promote stumpy formation in vitro. Furthermore, the expression of secreted trypanosome oligopeptidases generates a paracrine signal that accelerates stumpy formation in vivo. Peptidase-generated oligopeptide QS signals being received through TbGPR89 provides a mechanism for both trypanosome SIF production and reception.


Assuntos
Proteínas de Membrana Transportadoras/fisiologia , Percepção de Quorum/fisiologia , Trypanosoma/metabolismo , Diferenciação Celular , Sequência Conservada/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana Transportadoras/genética , Oligopeptídeos/genética , Oligopeptídeos/fisiologia , Filogenia , Proteínas de Protozoários/metabolismo , Percepção de Quorum/genética , Transdução de Sinais , Trypanosoma/fisiologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia , Virulência/fisiologia
2.
Nucleic Acids Res ; 49(11): 6456-6473, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34107032

RESUMO

RNA-protein interactions are central to all gene expression processes and contribute to a variety of human diseases. Therapeutic approaches targeting RNA-protein interactions have shown promising effects on some diseases that are previously regarded as 'incurable'. Here, we developed a fluorescent on-bead screening platform, RNA Pull-Down COnfocal NAnoscanning (RP-CONA), to identify RNA-protein interaction modulators in eukaryotic cell extracts. Using RP-CONA, we identified small molecules that disrupt the interaction between HuR, an inhibitor of brain-enriched miR-7 biogenesis, and the conserved terminal loop of pri-miR-7-1. Importantly, miR-7's primary target is an mRNA of α-synuclein, which contributes to the aetiology of Parkinson's disease. Our method identified a natural product quercetin as a molecule able to upregulate cellular miR-7 levels and downregulate the expression of α-synuclein. This opens up new therapeutic avenues towards treatment of Parkinson's disease as well as provides a novel methodology to search for modulators of RNA-protein interaction.


Assuntos
Proteína Semelhante a ELAV 1/antagonistas & inibidores , MicroRNAs/antagonistas & inibidores , Quercetina/farmacologia , alfa-Sinucleína/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína Semelhante a ELAV 1/metabolismo , Células HEK293 , Células HeLa , Humanos , MicroRNAs/metabolismo , Microscopia Confocal , RNA Mensageiro/metabolismo , alfa-Sinucleína/genética
3.
Plant Cell ; 31(3): 579-601, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787178

RESUMO

Light and nutrients are critical regulators of photosynthesis and metabolism in plants and algae. Many algae have the metabolic flexibility to grow photoautotrophically, heterotrophically, or mixotrophically. Here, we describe reversible Glc-dependent repression/activation of oxygenic photosynthesis in the unicellular green alga Chromochloris zofingiensis. We observed rapid and reversible changes in photosynthesis, in the photosynthetic apparatus, in thylakoid ultrastructure, and in energy stores including lipids and starch. Following Glc addition in the light, C. zofingiensis shuts off photosynthesis within days and accumulates large amounts of commercially relevant bioproducts, including triacylglycerols and the high-value nutraceutical ketocarotenoid astaxanthin, while increasing culture biomass. RNA sequencing reveals reversible changes in the transcriptome that form the basis of this metabolic regulation. Functional enrichment analyses show that Glc represses photosynthetic pathways while ketocarotenoid biosynthesis and heterotrophic carbon metabolism are upregulated. Because sugars play fundamental regulatory roles in gene expression, physiology, metabolism, and growth in both plants and animals, we have developed a simple algal model system to investigate conserved eukaryotic sugar responses as well as mechanisms of thylakoid breakdown and biogenesis in chloroplasts. Understanding regulation of photosynthesis and metabolism in algae could enable bioengineering to reroute metabolism toward beneficial bioproducts for energy, food, pharmaceuticals, and human health.


Assuntos
Clorofíceas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucose/farmacologia , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Antioxidantes/metabolismo , Bioengenharia , Carbono/metabolismo , Clorofíceas/genética , Clorofíceas/efeitos da radiação , Clorofíceas/ultraestrutura , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fotossíntese/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/ultraestrutura , Transcriptoma/efeitos da radiação , Xantofilas/metabolismo
4.
J Chem Inf Model ; 62(10): 2264-2268, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35442032

RESUMO

A simplistic assumption in setting up a competition assay is that a low affinity labeled ligand can be more easily displaced from a target protein than a high affinity ligand, which in turn produces a more sensitive assay. An often-cited paper correctly rallies against this assumption and recommends the use of the highest affinity ligand available for experiments aiming to determine competitive inhibitor affinities. However, we have noted this advice being applied incorrectly to competition-based primary screens where the goal is optimum assay sensitivity, enabling a clear yes/no binding determination for even low affinity interactions. The published advice only applies to secondary, confirmatory assays intended for accurate affinity determination of primary screening hits. We demonstrate that using very high affinity ligands in competition-based primary screening can lead to reduced assay sensitivity and, ultimately, the discarding of potentially valuable active compounds. We build on techniques developed in our PyBindingCurve software for a mechanistic understanding of complex biological interaction systems, developing the "CLAffinity tool" for simulating competition experiments using protein, ligand, and inhibitor concentrations common to drug screening campaigns. CLAffinity reveals optimum labeled ligand affinity ranges based on assay parameters, rather than general rules to optimize assay sensitivity. We provide the open source CLAffinity software toolset to carry out assay simulations and a video summarizing key findings to aid in understanding, along with a simple lookup table allowing identification of optimal dynamic ranges for competition-based primary screens. The application of our freely available software and lookup tables will lead to the consistent creation of more performant competition-based primary screens identifying valuable hit compounds, particularly for difficult targets.


Assuntos
Proteínas , Software , Ligantes , Ligação Proteica , Proteínas/química
5.
J Chem Inf Model ; 61(6): 2911-2915, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34006095

RESUMO

Understanding multicomponent binding interactions in protein-ligand, protein-protein, and competition systems is essential for fundamental biology and drug discovery. Hand-deriving equations quickly become unfeasible when the number of components is increased, and direct analytical solutions only exist to a certain complexity. To address this problem and allow easy access to simulation, plotting, and parameter fitting to complex systems at equilibrium, we present the Python package PyBindingCurve. We apply this software to explore homodimer and heterodimer formations culminating in the discovery that under certain conditions, homodimers are easier to break with an inhibitor than heterodimers and may also be more readily depleted. This is a potentially valuable and overlooked phenomenon of great importance to drug discovery. PyBindingCurve may be expanded to operate on any equilibrium binding system and allows definition of custom systems using a simple syntax. PyBindingCurve is available under the MIT license at https://github.com/stevenshave/pybindingcurve as the Python source code accompanied by examples and as an easily installable package within the Python Package Index.


Assuntos
Proteínas , Software , Simulação por Computador
6.
J Struct Biol ; 210(1): 107461, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31962158

RESUMO

Electron cryo-tomography allows for high-resolution imaging of stereocilia in their native state. Because their actin filaments have a higher degree of order, we imaged stereocilia from mice lacking the actin crosslinker plastin 1 (PLS1). We found that while stereocilia actin filaments run 13 nm apart in parallel for long distances, there were gaps of significant size that were stochastically distributed throughout the actin core. Actin crosslinkers were distributed through the stereocilium, but did not occupy all possible binding sites. At stereocilia tips, protein density extended beyond actin filaments, especially on the side of the tip where a tip link is expected to anchor. Along the shaft, repeating density was observed that corresponds to actin-to-membrane connectors. In the taper region, most actin filaments terminated near the plasma membrane. The remaining filaments twisted together to make a tighter bundle than was present in the shaft region; the spacing between them decreased from 13 nm to 9 nm, and the apparent filament diameter decreased from 6.4 to 4.8 nm. Our models illustrate detailed features of distinct structural domains that are present within the stereocilium.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Células Ciliadas Vestibulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/genética , Animais , Glicoproteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos/genética
7.
J Chem Inf Model ; 60(5): 2626-2633, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32045242

RESUMO

Cryo-electron tomography maps often exhibit considerable noise and anisotropic resolution, due to the low-dose requirements and the missing wedge in Fourier space. These spurious features are visually unappealing and, more importantly, prevent an automated segmentation of geometric shapes, requiring a subjective and labor-intensive manual tracing. We developed a novel computational strategy for objectively denoising and correcting missing-wedge artifacts in homogeneous specimen areas of tomograms, where it is assumed that a template repeats itself across the volume under consideration, as happens in the case of filaments. In our deconvolution approach, we use a template and a map of corresponding template locations, allowing us to compensate for the information lost in the missing wedge. We applied the method to tomograms of actin-filament bundles of inner-ear stereocilia, which are critical for the senses of hearing and balance. In addition, we demonstrate that our method can be used for cell membrane detection.


Assuntos
Algoritmos , Artefatos , Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador
8.
J Struct Biol ; 206(2): 149-155, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822456

RESUMO

High-resolution imaging of hair-cell stereocilia of the inner ear has contributed substantially to our understanding of auditory and vestibular function. To provide three-dimensional views of the structure of stereocilia cytoskeleton and membranes, we developed a method for rapidly freezing unfixed stereocilia on electron microscopy grids, which allowed subsequent 3D imaging by electron cryo-tomography. Structures of stereocilia tips, shafts, and tapers were revealed, demonstrating that the actin paracrystal was not perfectly ordered. This sample-preparation and imaging procedure will allow for examination of structural features of stereocilia in a near-native state.


Assuntos
Temperatura Baixa , Tomografia com Microscopia Eletrônica/métodos , Células Ciliadas Vestibulares/ultraestrutura , Estereocílios/ultraestrutura , Animais , Camundongos
9.
J Cell Sci ; 130(1): 177-189, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27505896

RESUMO

The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect to the outer nuclear envelope. The cytoskeleton is also connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues.


Assuntos
Técnicas de Cultura de Células/métodos , Estruturas do Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Imageamento Tridimensional , Actinas/metabolismo , Biomimética , Mama/citologia , Adesão Celular , Comunicação Celular , Pontos de Checagem do Ciclo Celular , Estruturas do Núcleo Celular/ultraestrutura , Citoesqueleto/ultraestrutura , Desmossomos/metabolismo , Desmossomos/ultraestrutura , Células Epiteliais/ultraestrutura , Espaço Extracelular/metabolismo , Feminino , Humanos , Queratinas/metabolismo , Microscopia de Fluorescência , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura
10.
Anal Chem ; 91(9): 5582-5590, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30964656

RESUMO

α-Synuclein fibrils are considered a hallmark of Parkinson's disease and other synucleinopathies. However, small oligomers that formed during the early stages of α-synuclein aggregation are thought to be the main toxic species causing disease. The formation of α-synuclein oligomers has proven difficult to follow, because of the heterogeneity and transient nature of the species formed. Here, a novel bead-based aggregation assay for monitoring the earliest stages of α-synuclein oligomerization, α-Synuclein-Confocal Nanoscanning (ASYN-CONA), is presented. The α-synuclein A91C single cysteine mutant is modified with a trifunctional chemical tag, which allows simultaneous fluorescent labeling with a green dye (tetramethylrhodamine, TMR) and attachment to microbeads. Beads with bound TMR-labeled α-synuclein are then incubated with a red dye (Cy5)-labeled variant of α-synuclein A91C, and EtOH (20%) to induce aggregation. Aggregation is detected by confocal scanning imaging, below the equatorial plane of the beads, which is known as the CONA technique. On-bead TMR-labeled α-synuclein and aggregated Cy5-labeled α-synuclein from the solution are quantitatively monitored in parallel by detection of fluorescent halos or "rings". α-Synuclein on-bead oligomerization results in a linear increase of red bead ring fluorescence intensity over a period of 5 h. Total internal reflection fluorescence microscopy was performed on oligomers cleaved from the beads, and it revealed that (i) oligomers are sufficiently stable in solution to investigate their composition, consisting of 6 ± 1 monomer units, and (ii) oligomers containing a mean of 15 monomers bind Thioflavin-T. Various known inhibitors of α-synuclein aggregation were used to validate the ASYN-CONA assay for drug screening. Baicalein, curcumin, and rifampicin showed concentration-dependent inhibition of the α-synuclein aggregation and the IC50 (the concentration of the compound at which the maxiumum intensity was reduced by one-half) were calculated.


Assuntos
Microscopia Confocal , Microesferas , Nanotecnologia/métodos , Agregados Proteicos , alfa-Sinucleína/química , Multimerização Proteica , Estrutura Quaternária de Proteína
11.
BMC Biol ; 16(1): 88, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097011

RESUMO

BACKGROUND: The ubiquitin-proteasome system (UPS) controls the stability, localization and/or activity of the proteome. However, the identification and characterization of complex individual ubiquitination cascades and their modulators remains a challenge. Here, we report a broadly applicable, multiplexed, miniaturized on-bead technique for real-time monitoring of various ubiquitination-related enzymatic activities. The assay, termed UPS-confocal fluorescence nanoscanning (UPS-CONA), employs a substrate of interest immobilized on a micro-bead and a fluorescently labeled ubiquitin which, upon enzymatic conjugation to the substrate, is quantitatively detected on the bead periphery by confocal imaging. RESULTS: UPS-CONA is suitable for studying individual enzymatic activities, including various E1, E2, and HECT-type E3 enzymes, and for monitoring multi-step reactions within ubiquitination cascades in a single experimental compartment. We demonstrate the power of the UPS-CONA technique by simultaneously following ubiquitin transfer from Ube1 through Ube2L3 to E6AP. We applied this multi-step setup to investigate the selectivity of five ubiquitination inhibitors reportedly targeting different classes of ubiquitination enzymes. Using UPS-CONA, we have identified a new activity of a small molecule E2 inhibitor, BAY 11-7082, and of a HECT E3 inhibitor, heclin, towards the Ube1 enzyme. CONCLUSIONS: As a sensitive, quantitative, flexible, and reagent-efficient method with a straightforward protocol, UPS-CONA constitutes a powerful tool for interrogation of ubiquitination-related enzymatic pathways and their chemical modulators, and is readily scalable for large experiments.


Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Complexo de Endopeptidases do Proteassoma/química , Ubiquitinação , Humanos , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação
12.
PLoS Genet ; 11(9): e1005500, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26352669

RESUMO

Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.


Assuntos
Células Ciliadas Auditivas Externas/metabolismo , Proteínas Motores Moleculares/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Rodopsina/metabolismo , Ácido Salicílico/farmacologia , beta-Ciclodextrinas/farmacologia
13.
Molecules ; 23(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641472

RESUMO

Cryo-electron tomography (cryo-ET) is a powerful method of visualizing the three-dimensional organization of supramolecular complexes, such as the cytoskeleton, in their native cell and tissue contexts. Due to its minimal electron dose and reconstruction artifacts arising from the missing wedge during data collection, cryo-ET typically results in noisy density maps that display anisotropic XY versus Z resolution. Molecular crowding further exacerbates the challenge of automatically detecting supramolecular complexes, such as the actin bundle in hair cell stereocilia. Stereocilia are pivotal to the mechanoelectrical transduction process in inner ear sensory epithelial hair cells. Given the complexity and dense arrangement of actin bundles, traditional approaches to filament detection and tracing have failed in these cases. In this study, we introduce BundleTrac, an effective method to trace hundreds of filaments in a bundle. A comparison between BundleTrac and manually tracing the actin filaments in a stereocilium showed that BundleTrac accurately built 326 of 330 filaments (98.8%), with an overall cross-distance of 1.3 voxels for the 330 filaments. BundleTrac is an effective semi-automatic modeling approach in which a seed point is provided for each filament and the rest of the filament is computationally identified. We also demonstrate the potential of a denoising method that uses a polynomial regression to address the resolution and high-noise anisotropic environment of the density map.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Estereocílios/ultraestrutura , Algoritmos , Animais , Tomografia com Microscopia Eletrônica , Humanos , Análise de Regressão , Estereocílios/metabolismo
14.
Anal Chem ; 89(10): 5319-5324, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28430416

RESUMO

Use of a heterobifunctional photoactivatable cross-linker, sulfo-SDA (diazirine), has yielded high-density data that facilitated structure modeling of individual proteins. We expand the photoactivatable chemistry toolbox here with a second reagent, sulfo-SBP (benzophenone). This further increases the density of photo-cross-linking to a factor of 20× over conventional cross-linking. Importantly, the two different photoactivatable groups display orthogonal directionality, enabling access to different protein regions, unreachable with a single cross-linker.

15.
Nat Chem Biol ; 10(2): 156-163, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24316736

RESUMO

Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small-molecule inhibitor of the E2 ubiquitin-conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin-binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester without decreasing the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities.


Assuntos
Aminoácidos/química , Compostos de Bifenilo/química , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Ubiquitina/química , Aminoácidos/farmacologia , Sítios de Ligação , Compostos de Bifenilo/farmacologia , Complexos de Coordenação/química , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
16.
Biotechnol Bioeng ; 113(1): 82-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26137889

RESUMO

Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization.


Assuntos
Parede Celular/química , Celulose/análise , Microfibrilas/metabolismo , Oryza/química , Células Vegetais/química , Análise Espectral Raman/métodos , Processamento Eletrônico de Dados
17.
J Neurosci ; 34(1): 305-12, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381291

RESUMO

The precise morphology of the mechanosensitive hair bundle requires seamless integration of actin and microtubule networks. Here, we identify Acf7a (actin crosslinking family protein 7a) as a protein positioned to bridge these distinct cytoskeletal networks in hair cells. By imaging Acf7a-Citrine fusion protein in zebrafish and immunolabeling of vestibular and cochlear mouse hair cells, we show that Acf7a and ACF7 circumscribe, underlie, and are interwoven into the cuticular plate (CP), and they also encircle the basal body of the kinocilium. In cochlear hair cells, ACF7 localization is graded, with the highest concentration near each fonticulus--an area free of F-actin in the region of the CP that contains the basal body. During hair-cell development and regeneration, Acf7a precedes formation of the hair bundle and CP. Finally, electron tomography demonstrates that the ends of microtubules insert into the CP and are decorated with filamentous linkers connecting microtubules to the CP. These observations are consistent with ACF7 being a linker protein, which may shape the cytoskeleton of the hair cell early during hair-bundle genesis.


Assuntos
Actinas/análise , Células Ciliadas Auditivas/química , Proteínas dos Microfilamentos/análise , Tubulina (Proteína)/análise , Máculas Acústicas , Actinas/ultraestrutura , Animais , Animais Geneticamente Modificados , Galinhas , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Feminino , Células Ciliadas Auditivas/ultraestrutura , Masculino , Camundongos , Proteínas dos Microfilamentos/ultraestrutura , Especificidade da Espécie , Tubulina (Proteína)/ultraestrutura , Peixe-Zebra
18.
Eukaryot Cell ; 13(3): 412-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24442893

RESUMO

In the bloodstream of mammalian hosts, the sleeping sickness parasite, Trypanosoma brucei, exists as a proliferative slender form or a nonproliferative, transmissible, stumpy form. The transition between these developmental forms is controlled by a density-dependent mechanism that is important for the parasite's infection dynamics, immune evasion via ordered antigenic variation, and disease transmissibility. However, stumpy formation has been lost in most laboratory-adapted trypanosome lines, generating monomorphic parasites that proliferate uncontrolled as slender forms in vitro and in vivo. Nonetheless, these forms are readily amenable to cell culture and high-throughput screening for trypanocidal lead compounds. Here, we have developed and exploited a high-throughput screen for developmental phenotypes using a transgenic monomorphic cell line expressing a reporter under the regulation of gene control signals from the stumpy-specific molecule PAD1. Using a whole-cell fluorescence-based assay to screen over 6,000 small molecules from a kinase-focused compound library, small molecules able to activate stumpy-specific gene expression and proliferation arrest were assayed in a rapid assay format. Independent follow-up validation identified one hit able to induce modest, yet specific, changes in mRNA expression indicative of a partial differentiation to stumpy forms in monomorphs. Further, in pleomorphs this compound induced a stumpy-like phenotype, entailing growth arrest, morphological changes, PAD1 expression, and enhanced differentiation to procyclic forms. This not only provides a potential tool compound for the further understanding of stumpy formation but also demonstrates the use of high-throughput screening in the identification of compounds able to induce specific phenotypes, such as differentiation, in African trypanosomes.


Assuntos
Ensaios de Triagem em Larga Escala , Fenótipo , Proteínas de Protozoários/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Trypanosoma brucei brucei/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/patogenicidade , Virulência/genética
19.
Proc Natl Acad Sci U S A ; 109(5): 1702-7, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307634

RESUMO

Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they may be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or anthraquinone-2,6-disulfonate (AQDS), an analog of the redox active components of humic substances. The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin-shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS, and that several MHCs are localized to the cell wall or cell surface. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants, suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results provide unique direct evidence for cell wall-associated cytochromes and support MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.


Assuntos
Citocromos c/metabolismo , Bactérias Gram-Positivas/metabolismo , Heme/metabolismo , Metais/metabolismo , Peptococcaceae/enzimologia , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Oxirredução , Peptococcaceae/ultraestrutura , Espectrometria de Massas em Tandem
20.
Proc Natl Acad Sci U S A ; 109(26): 10388-93, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22689949

RESUMO

The microenvironment of the cochlea is maintained by the barrier between the systemic circulation and the fluids inside the stria vascularis. However, the mechanisms that control the permeability of the intrastrial fluid-blood barrier remain largely unknown. The barrier comprises endothelial cells connected to each other by tight junctions and an underlying basement membrane. In a recent study, we found that the intrastrial fluid-blood barrier also includes a large number of perivascular cells with both macrophage and melanocyte characteristics. The perivascular-resident macrophage-like melanocytes (PVM/Ms) are in close contact with vessels through cytoplasmic processes. Here we demonstrate that PVM/Ms have an important role in maintaining the integrity of the intrastrial fluid-blood barrier and hearing function. Using a cell culture-based in vitro model and a genetically induced PVM/M-depleted animal model, we show that absence of PVM/Ms increases the permeability of the intrastrial fluid-blood barrier to both low- and high-molecular-weight tracers. The increased permeability is caused by decreased expression of pigment epithelial-derived factor, which regulates expression of several tight junction-associated proteins instrumental to barrier integrity. When tested for endocochlear potential and auditory brainstem response, PVM/M-depleted animals show substantial drop in endocochlear potential with accompanying hearing loss. Our results demonstrate a critical role for PVM/Ms in regulating the permeability of the intrastrial fluid-blood barrier for establishing a normal endocochlear potential hearing threshold.


Assuntos
Orelha Interna/patologia , Macrófagos/fisiologia , Melanócitos/fisiologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Estria Vascular/fisiologia , Junções Íntimas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA