Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Immunity ; 53(3): 564-580.e9, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750334

RESUMO

Tumor immune escape limits durable responses to T cell therapy. Here, we examined how regulation and function of gene products that provide the target epitopes for CD8+ T cell anti-tumor immunity influence therapeutic efficacy and resistance. We used a CRISPR-Cas9-based method (CRISPitope) in syngeneic melanoma models to fuse the same model CD8+ T cell epitope to the C-termini of different endogenous gene products. Targeting melanosomal proteins or oncogenic CDK4R24C (Cyclin-dependent kinase 4) by adoptive cell transfer (ACT) of the same epitope-specific CD8+ T cells revealed diverse genetic and non-genetic immune escape mechanisms. ACT directed against melanosomal proteins, but not CDK4R24C, promoted melanoma dedifferentiation, and increased myeloid cell infiltration. CDK4R24C antigen persistence was associated with an interferon-high and T-cell-rich tumor microenvironment, allowing for immune checkpoint inhibition as salvage therapy. Thus, the choice of target antigen determines the phenotype and immune contexture of recurrent melanomas, with implications to the design of cancer immunotherapies.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/transplante , Epitopos de Linfócito T/imunologia , Melanoma/imunologia , Melanoma/terapia , Evasão Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Epitopos de Linfócito T/genética , Técnicas de Inativação de Genes , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Células Mieloides/imunologia , Microambiente Tumoral/imunologia
2.
iScience ; 24(8): 102833, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34368651

RESUMO

Intercellular transmission of the second messenger 2',3'-cGAMP, synthesized by the viral DNA sensor cGAMP synthase (cGAS), is a potent mode of bystander activation during host defense. However, whether this mechanism also contributes to cGAS-dependent autoimmunity remains unknown. Here, using a murine bone marrow transplantation strategy, we demonstrate that, in Trex1 -/- -associated autoimmunity, cGAMP shuttling from radioresistant to immune cells induces NF-κB activation, interferon regulatory factor 3 (IRF3) phosphorylation, and subsequent interferon signaling. cGAMP travel prevented myeloid cell and lymphocyte death, promoting their accumulation in secondary lymphoid tissue. Nonetheless, it did not stimulate B cell differentiation into autoantibody-producing plasmablasts or aberrant T cell priming. Although cGAMP-mediated bystander activation did not induce spontaneous organ disease, it did trigger interface dermatitis after UV light exposure, similar to cutaneous lupus erythematosus. These findings reveal that, in Trex1-deficiency, intercellular cGAMP transfer propagates cGAS signaling and, under conducive conditions, causes tissue inflammation.

3.
Clin Epigenetics ; 12(1): 24, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041674

RESUMO

BACKGROUND: Upregulation of the histone methyltransferase enzyme EZH2 and its histone modification H3K27me3 has been linked to melanoma progression, metastasis, and resistance to immune checkpoint blockade (ICB). In clinical trials, EZH2 inhibitors are currently tested to overcome resistance to ICB. The aim of this study is to evaluate expression patterns and the predictive value of H3K27me3 and EZH2 in metastatic melanoma samples prior to ICB. As H3K27me3 expression has been associated with a dedifferentiated, invasive melanoma phenotype, we also investigated the prognostic value of H3K27me3 expression in primary melanomas. RESULTS: H3K27me3 and EZH2 expression were evaluated in a cohort of 44 metastatic melanoma samples before ICB using immunohistochemistry (IHC). 29/44 (66%) of melanomas showed H3K27me3 expression, and 6/44 (14%) showed EZH2 expression. No predictive value for therapeutic response to anti-PD-1 therapy could be found for H3K27me3 or EZH2 expression on melanoma cells. To investigate the prognostic significance of H3K27me3, we analyzed H3K27me3 expression in a representative cohort of 136 primary melanomas with known sentinel lymph node status. H3K27me3 expression is associated with increased tumor thickness and nodal involvement. Melanoma metastases showed a higher expression of H3K27me3 in comparison to primary melanomas. In human melanoma cell lines, TNFα and INFγ could not induce H3K27me3 expression. CONCLUSION: Our study shows that H3K27me3 expression is more frequent than EZH2 and is associated with a more invasive and metastatic melanoma cell phenotype. We suggest that H3K27me3 expression by IHC might be a suitable method to evaluate the activity of EZH2 inhibitors in clinical trials.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos como Assunto , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Melanoma/tratamento farmacológico , Melanoma/secundário , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Linfonodo Sentinela/patologia
4.
Nat Commun ; 6: 8755, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26530832

RESUMO

Inflammation promotes phenotypic plasticity in melanoma, a source of non-genetic heterogeneity, but the molecular framework is poorly understood. Here we use functional genomic approaches and identify a reciprocal antagonism between the melanocyte lineage transcription factor MITF and c-Jun, which interconnects inflammation-induced dedifferentiation with pro-inflammatory cytokine responsiveness of melanoma cells favouring myeloid cell recruitment. We show that pro-inflammatory cytokines such as TNF-α instigate gradual suppression of MITF expression through c-Jun. MITF itself binds to the c-Jun regulatory genomic region and its reduction increases c-Jun expression that in turn amplifies TNF-stimulated cytokine expression with further MITF suppression. This feed-forward mechanism turns poor peak-like transcriptional responses to TNF-α into progressive and persistent cytokine and chemokine induction. Consistently, inflammatory MITF(low)/c-Jun(high) syngeneic mouse melanomas recruit myeloid immune cells into the tumour microenvironment as recapitulated by their human counterparts. Our study suggests myeloid cell-directed therapies may be useful for MITF(low)/c-Jun(high) melanomas to counteract their growth-promoting and immunosuppressive functions.


Assuntos
Desdiferenciação Celular/genética , Citocinas/imunologia , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Células Mieloides/imunologia , Neoplasias Cutâneas/genética , Animais , Desdiferenciação Celular/imunologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Immunoblotting , Imuno-Histoquímica , Inflamação , Melanoma/imunologia , Camundongos , Fator de Transcrição Associado à Microftalmia/imunologia , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-jun , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Cutâneas/imunologia , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA