RESUMO
Mesothelioma is an aggressive cancer that is associated with exposure to asbestos. Although asbestos is banned in several countries, including the UK, an epidemic of mesothelioma is predicted to affect middle-income countries during this century owing to their heavy consumption of asbestos. The prognosis for patients with mesothelioma is poor, reflecting a failure of conventional chemotherapy that has ultimately resulted from an inadequate understanding of its biology. However, recent work has revolutionised the study of mesothelioma, identifying genetic and pathophysiological vulnerabilities, including the loss of tumour suppressors, epigenetic dysregulation and susceptibility to nutrient stress. We discuss how this knowledge, combined with advances in immunotherapy, is enabling the development of novel targeted therapies.
Assuntos
Amianto/toxicidade , Redes Reguladoras de Genes , Mesotelioma/terapia , Terapia Combinada , Epigênese Genética , Humanos , Mesotelioma/induzido quimicamente , Mesotelioma/genética , Mesotelioma/patologia , PrognósticoRESUMO
The generation of effective and safe nanoagents for biological applications requires their physicochemical characteristics to be tunable, and their cellular interactions to be well characterized. Here, the controlled synthesis is developed for preparing high-aspect ratio gold nanotubes (AuNTs) with tailorable wall thickness, microstructure, composition, and optical characteristics. The modulation of optical properties generates AuNTs with strong near infrared absorption. Surface modification enhances dispersibility of AuNTs in aqueous media and results in low cytotoxicity. The uptake and trafficking of these AuNTs by primary mesothelioma cells demonstrate their accumulation in a perinuclear distribution where they are confined initially in membrane-bound vesicles from which they ultimately escape to the cytosol. This represents the first study of the cellular interactions of high-aspect ratio 1D metal nanomaterials and will facilitate the rational design of plasmonic nanoconstructs as cytosolic nanoagents for potential diagnosis and therapeutic applications.