RESUMO
Itaconic acid is an important bio-based chemical. The present study aims to evaluate the applicability of semi-continuous fermentation technique for itaconic acid production by Aspergillus terreus. The fermentation is planned to be connected with bipolar membrane electrodialysis unit for acid recovery. This process allows the reuse of residual glucose from the effluent. Our particular attention was focused on the effect of glucose concentration. Two different glucose supplementation strategies were tested: constant glucose concentration in the refilling medium and adjusted glucose concentration in order to maintain a continuously high - 120 g/L - glucose concentration in the fermentor. The itaconic acid titre, yield and productivity for the 24 h time periods between draining/refilling interventions were investigated. The constantly high glucose concentration in the fermentor resulted in doubled biomass formation. The average itaconic acid titre was 32.9 ± 2.7 g/L. The producing strain formed numerous spores during semi-continuous fermentation that germinated continuously. Yield and volumetric productivity showed a periodic pattern during the procedure.
Assuntos
Aspergillus , Succinatos , Fermentação , GlucoseRESUMO
The effects of the bioreactor conditions, in particular the mode and intensity of aeration and mixing were studied on itaconic acid (IA) fermentation efficiency by Aspergillus terreus strain from glucose substrate. IA was produced in batch system by systematically varying the oxygen content of the aeration gas (from 21 to 31.5 vol% O2) and the stirring rate (from 150 to 600 rpm). The data were analyzed kinetically to characterize the behavior of the process, and besides, the performances were evaluated comparatively with the literature. It turned out that the operation of the bioreactor with either the higher inlet O2 concentration (31.5 vol% O2) or faster stirring (600 rpm) could enhance biological IA generation the most, resulting in yield and volumetric productivity of 0.31 g IA/g glucose and 0.32 g IA/g glucose and 3.15 g IA/L day and 4.26 g IA/L day, respectively. Overall, the significance of fermentation settings was shown in this work regarding IA production catalyzed by A. terreus and notable advances could be realized by adjusting the aeration and stirring towards an optimal combination.
Assuntos
Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Reatores Biológicos/microbiologia , Glucose/metabolismo , Succinatos/metabolismo , Fermentação , Oxigênio/metabolismoRESUMO
Urine is a widely available renewable source of nitrogen and phosphorous. The nitrogen in urine is present in the form of urea, which is rapidly hydrolyzed to ammonia and carbonic acid by the urease enzymes occurring in nature. In order to efficiently recover urea, the inhibition of urease must be done, usually by increasing the pH value above 11. This method, however, usually is based on external chemical dosing, limiting the sustainability of the process. In this work, the simultaneous recovery of urea and phosphorous from synthetic urine was aimed at by means of electrochemical pH modulation. Electrochemical cells were constructed and used for urea stabilization from synthetic urine by the in situ formation of OH- ions at the cathode. In addition, phosphorous precipitation with divalent cations (Ca2+, Mg2+) in the course of pH elevation was studied. Electrochemical cells equipped with commercial (Fumasep FKE) and developmental (PSEBS SU) cation exchange membranes (CEM) were used in this study to carry out urea stabilization and simultaneous P-recovery at an applied current density of 60 A m-2. The urea was successfully stabilized for a long time (more than 1 month at room temperature and nearly two months at 4 °C) at a pH of 11.5. In addition, >82% P-recovery could be achieved in the form of precipitate, which was identified as amorphous calcium magnesium phosphate (CMP) by using transmission electron microscopy (TEM).
RESUMO
In this paper esterification of ethanol and lactic acid catalyzed by Candida antarctica B (Novozyme 435) in ionic liquid (Cyphos 104) was studied. The influence of different variables on lipase enantioselectivity and lactic acid conversion was investigated. The variables investigated were ionic liquid mass/lipase mass ratio, water content, alcohol excess and temperature. Using the Design Expert software 2(3) factorial experimental plan (two levels, three factors) was performed to ascertain the effect of selected variables and their interactions on the ethyl lactate enantiomeric excess and lactic acid conversion. The results of the experiments and statistical processing suggest that temperature and alcohol excess have the highest effect on the ethyl lactate enantiomeric excess, while temperature and water content have the highest influence on the lactic acid conversion. The statistical mathematical model developed on the basis of the experimental data showed that the highest enantiomeric excess achieved in the investigated variable range is 34.3%, and the highest conversion is 63.8% at the initial conditions of water content at 8%; 11-fold molar excess of alcohol and temperature at 30 °C.
Assuntos
Candida/enzimologia , Etanol/química , Líquidos Iônicos/química , Ácido Láctico/química , Lipase/química , Modelos Químicos , Técnicas de Química Combinatória , Simulação por Computador , Enzimas Imobilizadas , Esterificação , Proteínas FúngicasRESUMO
The proper strategy to establish efficient hydrogen-producing biosystems is the biochemical, physiological characterization of hydrogen-producing microbes followed by metabolic engineering in order to give extraordinary properties to the strains and, finally, bioprocess optimization to realize enhanced hydrogen fermentation capability. In present paper, it was aimed to show the utility both of strain engineering and process optimization through a comparative study of wild-type and genetically modified E. coli strains, where the effect of two major operational factors (substrate concentration and pH) on bioH2 production was investigated by experimental design and response surface methodology (RSM) was used to determine the suitable conditions in order to obtain maximum yields. The results revealed that by employing the genetically engineered E. coli (DJT 135) strain under optimized conditions (pH: 6.5; Formate conc.: 1.25 g/L), 0.63 mol H2/mol formate could be attained, which was 1.5 times higher compared to the wild-type E. coli (XL1-BLUE) that produced 0.42 mol H2/mol formate (pH: 6.4; Formate conc.: 1.3 g/L).
Assuntos
Escherichia coli/metabolismo , Hidrogênio/metabolismo , Fermentação , Propriedades de SuperfícieRESUMO
In this research, the recovery of dissolved biogas (CO2/CH4) from synthetic anaerobic effluents was studied using non-porous, polydimethylsiloxane (PDMS), hollow-fibre gas-liquid membrane contactors towards the design of a reduced carbon-footprint integrated bioprocess. As a key parameter, the gas-to-liquid (G/L) ratio (employing argon as sweep gas) was systematically varied in the range of 0.5-2.0. The results showed on a 1 m2 PDMS module that increasing the liquid (effluent) flow rate favours the CH4 transport, while a higher sweep gas flow rate is preferable for the CO2 transport over CH4. Depending on the actual biogas composition and the CO2 content of the effluent, the methane recovery could be improved up to 63 % under steady-state conditions. In general, similar tendencies were observed when another PDMS membrane module with a smaller surface area (2 500 cm2) was applied hence, in this sense, the separation behaviour seems to be independent of the membrane size.
RESUMO
In this study, microbial fuel cells deploying heterogeneous ion exchange membranes were assessed. The behavior of the cells as a function of the membrane applied was evaluated in terms of maximal current density, electron recovery efficiency and energy production rate (up to 427.5 mA, 47.7 % and 660 J m-2h-1, respectively) at different substrate (acetate) feedings (2.15 - 8.6 mM). System performance was characterized in the light of oxygen and acetate crossovers. The effect of membranes (in relation to the oxygen mass transfer coefficient, kO) on the microbial diversity of anodic and membrane-surface biofilms was investigated. Based on the relative abundance of bacterial orders, the two populations could be distinguished and membranes with larger kO tended to promote more the air-tolerant microbes in the biofouling layer. This indicates that membrane kO has a direct effect on membrane foulant microbial composition, and thus, on the expected time-stability of the membrane.
Assuntos
Fontes de Energia Bioelétrica , Microbiota , Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Eletrodos , Troca Iônica , Membranas Artificiais , OxigênioRESUMO
The scope of the currentreviewis to discuss and evaluate the role of the external electrical load/resistor (EEL) on the overall behavior and functional properties of microbial fuel cells (MFCs). In this work, a comprehensive analysis is made by considering various levels of MFC architecture, such as electric and energy harvesting efficiency, anode electrode potential shifts, electro-active biofilm formation, cell metabolism and extracellular electron transfer mechanisms, as a function of the EEL and its control strategies. It is outlined that taking the regulation of EEL into account at MFC optimization is highly beneficial, and in order to support this step, in this review, a variety of guidelines are collected and analyzed.
Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Biofilmes , Impedância Elétrica , Eletrodos , Desenho de EquipamentoRESUMO
Hydrophobic ionic liquids (IL) may offer a special electrolyte in the form of supported ionic liquid membranes (SILM) for microbial fuel cells (MFC) due to their advantageous mass transfer characteristics. In this work, the proton and ion transfer properties of SILMs made with IL containing imidazolium cation and [PF6]- and [NTf2]- anions were studied and compared to Nafion. It resulted that both ILs show better proton mass transfer and diffusion coefficient than Nafion. The data implied the presence of water microclusters permeating through [hmim][PF6]-SILM to assist the proton transfer. This mechanism could not be assumed in the case of [NTf2]- containing IL. Ion transport numbers of K+, Na+, and H+ showed that the IL with [PF6]- anion could be beneficial in terms of reducing ion transfer losses in MFCs. Moreover, the conductivity of [bmim][PF6]-SILM at low electrolyte concentration (such as in MFCs) was comparable to Nafion.
RESUMO
In this work, a novel cation exchange membrane, PSEBS SU22 was deployed in microbial fuel cells (MFCs) to examine system efficacy in line with membrane characteristics and inoculum source. It turned out that compared to a reference membrane (Nafion), employing PSEBS SU22 resulted in higher current density and electricity generation kinetics, while the electron recoveries were similar (19-28%). These outcomes indicated more beneficial ion transfer features and lower mass transfer-related losses in the PSEBS SU22-MFCs, supported by membrane water uptake, ion exchange capacity, ionic conductivity and permselectivity. By re-activating the membranes after (bio)foulant removal, PSEBS SU22 regained nearly its initial conductivity, highlighting a salient functional stability. Although the particular inoculum showed a clear effect on the microbial composition of the membrane biofouling layers, the dominance of aerobic species was revealed in all cases. Considering all the findings, the PSEBS SU22 seems to be promising for application in MFCs.
Assuntos
Fontes de Energia Bioelétrica , Incrustação Biológica , Alcenos , Cátions , Eletricidade , Eletrodos , Etilenos , Polietileno , PoliestirenosRESUMO
Ionic liquids as trihexyl-tetradecyl-phophonium-dicyanamide (Cyphos 105) and cocosalkyl-pentaethoxi-methyl-ammonium-methosulfate (Ammoeng 100) were applied for the esterification of stearic acid and glycerol using Candida antarctica lipase (Novozyme 435). When only ILs were applied as solvents at 1:15 initial substrate molar ratio the conversion was 76 and 78 % in the case of two kinds of ILs, respectively. Mixed the ILs and supercritical CO2 the conversion reached 79 and 86 %. The conversion was found highest in supercritical CO2, reached 90 %. Moreover formation of glycerol-di-stearate is much lower in the case of ILs comparing with SCCO2.
RESUMO
Biohydrogen production via dark fermentation is currently the most developed method considering its practical readiness for scale-up. However, technological issues to be resolved are still identifiable and should be of concern, particularly in terms of internal mass transfer. If sufficient liquid-to-gas H2 mass transfer rates are not ensured, serious problems associated with the recovery of biohydrogen and consequent inhibition of the process can occur. Therefore, the continuous and effective removal of H2 gas is required, which can be performed using gas separation membranes. In this review, we aim to analyze the literature experiences and knowledge regarding mass transfer enhancement approaches and show how membranes may contribute to this task by simultaneously processing the internal (headspace) gas, consisting mainly of H2 and CO2. Promising strategies related to biogas recirculation and integrated schemes using membranes will be presented and discussed to detect potential future research directions for improving biohydrogen technology.
Assuntos
Biocombustíveis , Hidrogênio , FermentaçãoRESUMO
In this study, hollow fibers of commercial polyimide were arranged into membrane modules to test their capacity and performance towards natural gas processing. Particularly, the membranes were characterized for CO2/CH4 separation with and without exposure to some naturally occurring contaminants of natural gases, namely hydrogen sulfide, dodecane, and the mixture of aromatic hydrocarbons (benzene, toluene, xylene), referred to as BTX. Gas permeation experiments were conducted to assess the changes in the permeability of CO2 and CH4 and related separation selectivity. Compared to the properties determined for the pristine polyimide membranes, all the above pollutants (depending on their concentrations and the ensured contact time with the membrane) affected the permeability of gases, while the impact of various exposures on CO2/CH4 selectivity seemed to be complex and case-specific. Overall, it was found that the minor impurities in the natural gas could have a notable influence and should therefore be considered from an operational stability viewpoint of the membrane separation process.
RESUMO
The performance and behavior of microbial fuel cells (MFCs) are influenced by among others the external load (Rext). In this study, the anode-surface biofilm formation in MFCs operated under different Rext selection/tracking-strategies was assessed. MFCs were characterized by electrochemical (voltage/current generation, polarization tests, EIS), molecular biological (microbial consortium analysis) and bioinformatics (principal component analysis) tools. The results indicated that the MFC with dynamic Rext adjustment (as a function of the actual MFC internal resistance) achieved notably higher performance but relatively lower operational stability, mainly due to the acidification of the biofilm. The opposite (lower performance, increased stability) could be observed with the static (low or high) Rext application (or OCV) strategies, where adaptive microbial processes were assumed. These possible adaptation phenomena were outlined by a theoretical framework and the significant impact of Rext on the anode colonization process and energy recovery with MFCs was concluded.
Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Eletricidade , Eletrodos , Consórcios MicrobianosRESUMO
Effluents of anaerobic processes still contain valuable components, among which volatile fatty acids (VFAs) can be regarded and should be recovered and/or used further in applications such as microbial electrochemical technology to generate energy/energy carriers. To accomplish the separation of VFAs from waste liquors, various membrane-based solutions applying different transport mechanisms and traits are available, including pressure-driven nanofiltration (NF) and reverse osmosis (RO) which are capable to clarify, fractionate and concentrate salts and organics. Besides, emerging techniques using a membrane such as forward osmosis (FO) and supported liquid membrane (SILM) technology can be taken into consideration for VFA separation. In this work, we evaluate these four various downstream methods (NF, RO, FO and SILM) to determine the best one, comparatively, for enriching VFAs from pH-varied model solutions composed of acetic, butyric and propionic acids in different concentrations. The assessment of the separation experiments was supported by statistical examination to draw more solid conclusions. Accordingly, it turned out that all methods can separate VFAs from the model solution. The highest average retention was achieved by RO (84% at the applied transmembrane pressure of 6 bar), while NF provided the highest permeance (6.5 L/m2hbar) and a high selectivity between different VFAs.
RESUMO
Membrane separators are key elements of microbial fuel cells (MFCs), especially of those constructed in a dual-chamber configuration. Until now, membranes made of Nafion have been applied the most widely to set-up MFCs. However, there is a broader agreement in the literature that Nafion is expensive and in many cases, does not meet the actual (mainly mass transfer-specific) requirements demanded by the process and users. Driven by these issues, there has been notable progress in the development of alternative materials for membrane fabrication, among which those relying on the deployment of ionic liquids are emerging. In this review, the background of and recent advances in ionic liquid-containing separators, particularly supported ionic liquid membranes (SILMs), designed for MFC applications are addressed and evaluated. After an assessment of the basic criteria to be fulfilled by membranes in MFCs, experiences with SILMs will be outlined, along with important aspects of transport processes. Finally, a comparison with the literature is presented to elaborate on how MFCs installed with SILM perform relative to similar systems assembled with other, e.g., Nafion, membranes.
RESUMO
The scope of the review is to discuss the current state of knowledge and lessons learned on biofouling of membrane separators being used for microbial electrochemical technologies (MET). It is illustrated what crucial membrane features have to be considered and how these affect the MET performance, paying particular attention to membrane biofouling. The complexity of the phenomena was demonstrated and thereby, it is shown that membrane qualities related to its surface and inherent material features significantly influence (and can be influenced by) the biofouling process. Applicable methods for assessment of membrane biofouling are highlighted, followed by the detailed literature evaluation. Finally, an outlook on e.g. possible mitigation strategies for membrane biofouling in MET is provided.
Assuntos
Incrustação Biológica , Biofilmes , Técnicas EletroquímicasRESUMO
In this study, microbial fuel cells (MFCs) - operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) - were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy - EIS, cyclic voltammetry - CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2-5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148⯱â¯17â¯Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.
Assuntos
Técnicas Eletroquímicas , Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/instrumentação , Eletrodos , Polímeros de Fluorcarboneto , Geobacter , Troca IônicaRESUMO
This study investigated mixed microalgae consortia cultivation in a fed batch reactor using textile wastewater. The results showed 95% of total phosphorus (TP) and 70% of total nitrogen (TN) depletion during the operational period. Algal biomass growth, pollutant removal, and biomass constituents were examined for five cycles of the fed batch operation. The length of the cycles decreased from 30 days to 10 days as the cycle repeated, which implied gradual adaptation of microalgae to textile wastewater. Color of textile wastewater was removed in the range of 68-72% in all the cycles experimented. Microbial algal cultivation with textile wastewater would be a feasible approach for remediation and resource recovery purpose.
RESUMO
Microbial electrohydrogenesis cells (MECs) are devices that have attracted significant attention from the scientific community to generate hydrogen gas electrochemically with the aid of exoelectrogen microorganisms. It has been demonstrated that MECs are capable to deal with the residual organic materials present in effluents generated along with dark fermentative hydrogen bioproduction (DF). Consequently, MECs stand as attractive post-treatment units to enhance the global H2 yield as a part of a two-stage, integrated application (DF-MEC). In this review article, it is aimed (i) to assess results communicated in the relevant literature on cascade DF-MEC systems, (ii) describe the characteristics of each steps involved and (iii) discuss the experiences as well as the lessons in order to facilitate knowledge transfer and help the interested readers with the construction of more efficient coupled set-ups, leading eventually to the improvement of overall biohydrogen evolution performances.