Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 66(5): 852-862, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28389570

RESUMO

OBJECTIVE: Blood vessel epicardial substance (BVES) is a tight junction-associated protein that regulates epithelial-mesenchymal states and is underexpressed in epithelial malignancy. However, the functional impact of BVES loss on tumourigenesis is unknown. Here we define the in vivo role of BVES in colitis-associated cancer (CAC), its cellular function and its relevance to patients with IBD. DESIGN: We determined BVES promoter methylation status using an Infinium HumanMethylation450 array screen of patients with UC with and without CAC. We also measured BVES mRNA levels in a tissue microarray consisting of normal colons and CAC samples. Bves-/- and wild-type mice (controls) were administered azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce tumour formation. Last, we used a yeast two-hybrid screen to identify BVES interactors and performed mechanistic studies in multiple cell lines to define how BVES reduces c-Myc levels. RESULTS: BVES mRNA was reduced in tumours from patients with CAC via promoter hypermethylation. Importantly, BVES promoter hypermethylation was concurrently present in distant non-malignant-appearing mucosa. As seen in human patients, Bves was underexpressed in experimental inflammatory carcinogenesis, and Bves-/- mice had increased tumour multiplicity and degree of dysplasia after AOM/DSS administration. Molecular analysis of Bves-/- tumours revealed Wnt activation and increased c-Myc levels. Mechanistically, we identified a new signalling pathway whereby BVES interacts with PR61α, a protein phosphatase 2A regulatory subunit, to mediate c-Myc destruction. CONCLUSION: Loss of BVES promotes inflammatory tumourigenesis through dysregulation of Wnt signalling and the oncogene c-Myc. BVES promoter methylation status may serve as a CAC biomarker.


Assuntos
Carcinogênese/genética , Moléculas de Adesão Celular/genética , Colite Ulcerativa/metabolismo , Neoplasias do Colo/metabolismo , Proteínas de Membrana/genética , Proteínas Musculares/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Biomarcadores Tumorais/genética , Células CACO-2 , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colite Ulcerativa/genética , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Metilação de DNA , Sulfato de Dextrana , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/metabolismo , Via de Sinalização Wnt
2.
Stem Cells ; 34(6): 1626-36, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26891025

RESUMO

Blood vessel epicardial substance (BVES/Popdc1) is a junctional-associated transmembrane protein that is underexpressed in a number of malignancies and regulates epithelial-to-mesenchymal transition. We previously identified a role for BVES in regulation of the Wnt pathway, a modulator of intestinal stem cell programs, but its role in small intestinal (SI) biology remains unexplored. We hypothesized that BVES influences intestinal stem cell programs and is critical to SI homeostasis after radiation injury. At baseline, Bves(-/-) mice demonstrated increased crypt height, as well as elevated proliferation and expression of the stem cell marker Lgr5 compared to wild-type (WT) mice. Intercross with Lgr5-EGFP reporter mice confirmed expansion of the stem cell compartment in Bves(-/-) mice. To examine stem cell function after BVES deletion, we used ex vivo 3D-enteroid cultures. Bves(-/-) enteroids demonstrated increased stemness compared to WT, when examining parameters such as plating efficiency, stem spheroid formation, and retention of peripheral cystic structures. Furthermore, we observed increased proliferation, expression of crypt-base columnar "CBC" and "+4" stem cell markers, amplified Wnt signaling, and responsiveness to Wnt activation in the Bves(-/-) enteroids. Bves expression was downregulated after radiation in WT mice. Moreover, after radiation, Bves(-/-) mice demonstrated significantly greater SI crypt viability, proliferation, and amplified Wnt signaling in comparison to WT mice. Bves(-/-) mice also demonstrated elevations in Lgr5 and Ascl2 expression, and putative damage-responsive stem cell populations marked by Bmi1 and TERT. Therefore, BVES is a key regulator of intestinal stem cell programs and mucosal homeostasis. Stem Cells 2016;34:1626-1636.


Assuntos
Moléculas de Adesão Celular/metabolismo , Raios gama , Intestinos/citologia , Proteínas Musculares/metabolismo , Células-Tronco/citologia , Animais , Moléculas de Adesão Celular/genética , Sobrevivência Celular/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Feminino , Deleção de Genes , Homeostase/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Tolerância a Radiação/efeitos da radiação , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos da radiação , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Via de Sinalização Wnt/efeitos da radiação
3.
J Med Genet ; 52(3): 147-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25564561

RESUMO

BACKGROUND: Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. METHODS AND RESULTS: Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations revealed two novel non-synonymous variants in CENPF, a microtubule-regulating gene. All four affected fetuses showed segregation for two mutated alleles [IVS5-2A>C, predicted to abolish the consensus splice-acceptor site from exon 6; c.1744G>T, p.E582X]. In a second unrelated patient exhibiting microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88) colocalised with CENP-F along the ciliary axonemes of renal epithelial cells in age-matched control human fetuses but did not in truncated cilia of mutant CENPF kidneys. Pairwise co-immunoprecipitation assays of mitotic and serum-starved HEKT293 cells confirmed that IFT88 precipitates with endogenous CENP-F. CONCLUSIONS: Our data identify CENPF as a new centriolar disease gene implicated in severe human ciliopathy and microcephaly related phenotypes. CENP-F has a novel putative function in ciliogenesis and cortical neurogenesis.


Assuntos
Proteínas Cromossômicas não Histona/genética , Cílios/genética , Genética Médica , Microcefalia/genética , Proteínas dos Microfilamentos/genética , Animais , Centríolos/genética , Cílios/patologia , Exoma/genética , Feminino , Feto , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Microcefalia/patologia , Mutação , Células NIH 3T3 , Linhagem , Gravidez , Peixe-Zebra
4.
Dev Dyn ; 244(3): 410-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25546231

RESUMO

Regional differences in vascular physiology and disease response exist throughout the vascular tree. While these differences in physiology and disease correspond to regional vascular environmental conditions, there is also compelling evidence that the embryonic origins of the smooth muscle inherent to the vessels may play a role. Here, we review what is known regarding the role of embryonic origin of vascular smooth muscle cells during vascular development. The focus of this review is to highlight the heterogeneity in the origins of vascular smooth muscle cells and the resulting regional physiologies of the vessels. Our goal is to stimulate future investigation into this area and provide a better understanding of vascular organogenesis and disease. .


Assuntos
Músculo Liso Vascular/embriologia , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Organogênese , Doenças Vasculares/embriologia , Adulto , Animais , Humanos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Doenças Vasculares/patologia
5.
Dev Biol ; 391(2): 125-32, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24746591

RESUMO

Historically, analyses of mesothelial differentiation have focused on the heart where a highly migratory population of progenitors originating from a localized "extrinsic" source moves to and over the developing organ. This model long stood alone as the paradigm for generation of this cell type. Here, using chick/quail chimeric grafting and subsequent identification of mesothelial cell populations, we demonstrate that a different mechanism for the generation of mesothelia exists in vertebrate organogenesis. In this newly discovered model, mesothelial progenitors are intrinsic to organs of the developing digestive and respiratory systems. Additionally, we demonstrate that the early heart stands alone in its ability to recruit an entirely exogenous mesothelial cell layer during development. Thus, the newly identified "organ intrinsic" model of mesotheliogenesis appears to predominate while the long-studied cardiac model of mesothelial development may be the outlier.


Assuntos
Células-Tronco Embrionárias/metabolismo , Epitélio/embriologia , Trato Gastrointestinal/embriologia , Organogênese , Sistema Respiratório/embriologia , Animais , Diferenciação Celular , Movimento Celular , Embrião de Galinha , Quimera , Coração/embriologia , Codorniz
6.
Development ; 139(16): 2926-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22764055

RESUMO

Mesothelium is the surface layer of all coelomic organs and is crucial for the generation of their vasculature. Still, our understanding of the genesis of this essential cell type is restricted to the heart where a localized exogenous population of cells, the proepicardium, migrates to and envelops the myocardium supplying mesothelial, vascular and stromal cell lineages. Currently it is not known whether this pattern of development is specific to the heart or applies broadly to other coelomic organs. Using two independent long-term lineage-tracing studies, we demonstrate that mesothelial progenitors of the intestine are intrinsic to the gut tube anlage. Furthermore, a novel chick-quail chimera model of gut morphogenesis reveals these mesothelial progenitors are broadly distributed throughout the gut primordium and are not derived from a localized and exogenous proepicardium-like source of cells. These data demonstrate an intrinsic origin of mesothelial cells to a coelomic organ and provide a novel mechanism for the generation of mesothelial cells.


Assuntos
Epitélio/embriologia , Intestinos/embriologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Embrião de Galinha , Coturnix , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Quimeras de Transplante/embriologia , Quimeras de Transplante/genética , Quimeras de Transplante/metabolismo
7.
Dev Dyn ; 243(2): 216-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24357262

RESUMO

A long and productive history in biomedical research defines the chick as a model for human biology. Fundamental discoveries, including the description of directional circulation propelled by the heart and the link between oncogenes and the formation of cancer, indicate its utility in cardiac biology and cancer. Despite the more recent arrival of several vertebrate and invertebrate animal models during the last century, the chick embryo remains a commonly used model for vertebrate biology and provides a tractable biological template. With new molecular and genetic tools applied to the avian genome, the chick embryo is accelerating the discovery of normal development and elusive disease processes. Moreover, progress in imaging and chick culture technologies is advancing real-time visualization of dynamic biological events, such as tissue morphogenesis, angiogenesis, and cancer metastasis. A rich background of information, coupled with new technologies and relative ease of maintenance, suggest an expanding utility for the chick embryo in cardiac biology and cancer research.


Assuntos
Pesquisa Biomédica/métodos , Doenças Cardiovasculares/fisiopatologia , Embrião de Galinha , Modelos Animais , Neoplasias/fisiopatologia , Neovascularização Fisiológica/fisiologia , Animais , Pesquisa Biomédica/tendências , Valvas Cardíacas/crescimento & desenvolvimento , Hemodinâmica/fisiologia , Crista Neural/fisiologia
8.
J Mol Cell Cardiol ; 69: 88-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24508561

RESUMO

Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression.


Assuntos
Aorta/embriologia , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Variação Genética , Músculo Liso Vascular/embriologia , Animais , Aorta/metabolismo , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Músculo Liso Vascular/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
EMBO J ; 29(3): 532-45, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20057356

RESUMO

Blood vessel/epicardial substance (Bves) is a transmembrane protein that influences cell adhesion and motility through unknown mechanisms. We have discovered that Bves directly interacts with VAMP3, a SNARE protein that facilitates vesicular transport and specifically recycles transferrin and beta-1-integrin. Two independent assays document that cells expressing a mutated form of Bves are severely impaired in the recycling of these molecules, a phenotype consistent with disruption of VAMP3 function. Using Morpholino knockdown in Xenopus laevis, we demonstrate that elimination of Bves function specifically inhibits transferrin receptor recycling, and results in gastrulation defects previously reported with impaired integrin-dependent cell movements. Kymographic analysis of Bves-depleted primary and cultured cells reveals severe impairment of cell spreading and adhesion on fibronectin, indicative of disruption of integrin-mediated adhesion. Taken together, these data demonstrate that Bves interacts with VAMP3 and facilitates receptor recycling both in vitro and during early development. Thus, this study establishes a newly identified role for Bves in vesicular transport and reveals a novel, broadly applied mechanism governing SNARE protein function.


Assuntos
Proteínas Musculares/fisiologia , Vesículas Transportadoras/metabolismo , Proteínas de Xenopus/fisiologia , Animais , Transporte Biológico/genética , Células COS , Adesão Celular/genética , Células Cultivadas , Chlorocebus aethiops , Cães , Embrião não Mamífero , Integrina beta1/metabolismo , Integrina beta1/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Distribuição Tecidual , Transferrina/metabolismo , Vesículas Transportadoras/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
10.
Dev Dyn ; 241(11): 1678-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22930586

RESUMO

BACKGROUND: To generate the mature intestine, splanchnic mesoderm diversifies into six different tissue layers each with multiple cell types through concurrent and complex morphogenetic events. Hindering the progress of research in the field is the lack of a detailed description of the fundamental morphological changes that constitute development of the intestinal mesoderm. RESULTS: We used immunofluorescence and morphometric analyses of wild-type and Tg(tie1:H2B-eYFP) quail embryos to establish a comprehensive timeline of mesodermal development in the avian intestine. The following landmark features were analyzed from appearance of the intestinal primordium through generation of the definitive structure: radial compartment formation, basement membrane dynamics, mesothelial differentiation, mesenchymal expansion and growth patterns, smooth muscle differentiation, and maturation of the vasculature. In this way, structural relationships between mesodermal components were identified over time. CONCLUSIONS: This integrated analysis presents a roadmap for investigators and clinicians to evaluate diverse experimental data obtained at individual stages of intestinal development within the longitudinal context of intestinal morphogenesis.


Assuntos
Intestino Delgado/embriologia , Intestino Delgado/metabolismo , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Animais , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Microscopia de Fluorescência , Codorniz
12.
Mol Biol Cell ; 17(7): 3176-86, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16672379

RESUMO

SNAP-25 is a component of the SNARE complex that is involved in membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between SNAP-25 and cytoplasmic Lek1 (cytLEK1), a protein previously demonstrated to associate with the microtubule network. The binding domains within each protein were defined by yeast two-hybrid, coimmunoprecipitation, and colocalization studies. Confocal analyses reveal a high degree of colocalization between the proteins. In addition, the endogenous proteins can be isolated as a complex by immunoprecipitation. Further analyses demonstrate that cytLEK1 and SNAP-25 colocalize and coprecipitate with Rab11a, myosin Vb, VAMP2, and syntaxin 4, components of the plasma membrane recycling pathway. Overexpression of the SNAP-25-binding domain of cytLEK1, and depletion of endogenous Lek1 alters transferrin trafficking, consistent with a function in vesicle recycling. Taken together, our studies indicate that cytLEK1 is a link between recycling vesicles and the microtubule network through its association with SNAP-25. This interaction may play a key role in the regulation of the recycling endosome pathway.


Assuntos
Membrana Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Membrana Celular/química , Células Cultivadas , Proteínas Cromossômicas não Histona/análise , Endossomos/química , Endossomos/metabolismo , Camundongos , Proteínas dos Microfilamentos , Microtúbulos/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Deleção de Sequência , Proteína 25 Associada a Sinaptossoma/análise , Transferrina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
Sci Rep ; 8(1): 7546, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29765066

RESUMO

Centromere-binding protein F (CENP-F) is a very large and complex protein with many and varied binding partners including components of the microtubule network. Numerous CENP-F functions impacting diverse cellular behaviors have been identified. Importantly, emerging data have shown that CENP-F loss- or gain-of-function has critical effects on human development and disease. Still, it must be noted that data at the single cardiac myocyte level examining the impact of CENP-F loss-of-function on fundamental cellular behavior is missing. To address this gap in our knowledge, we analyzed basic cell structure and function in cardiac myocytes devoid of CENP-F. We found many diverse structural abnormalities including disruption of the microtubule network impacting critical characteristics of the cardiac myocyte. This is the first report linking microtubule network malfunction to cardiomyopathy. Importantly, we also present data demonstrating a direct link between a CENP-F single nucleotide polymorphism (snp) and human cardiac disease. In a proximate sense, these data examining CENP-F function explain the cellular basis underlying heart disease in this genetic model and, in a larger sense, they will hopefully provide a platform upon which the field can explore diverse cellular outcomes in wide-ranging areas of research on this critical protein.


Assuntos
Cardiomiopatia Dilatada/genética , Proteínas Cromossômicas não Histona/genética , Insuficiência Cardíaca/genética , Mutação com Perda de Função , Proteínas dos Microfilamentos/genética , Miócitos Cardíacos/patologia , Polimorfismo de Nucleotídeo Único , Animais , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Proteínas Cromossômicas não Histona/metabolismo , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Insuficiência Cardíaca/fisiopatologia , Humanos , Junções Intercelulares/patologia , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/patologia , Miócitos Cardíacos/metabolismo , Volume Sistólico
14.
Elife ; 72018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540249

RESUMO

The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 µm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Fibras de Estresse/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Forminas , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Fibras Musculares Esqueléticas/citologia , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Interferência de RNA
15.
Mucosal Immunol ; 11(5): 1363-1374, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29907869

RESUMO

Blood vessel epicardial substance (BVES), or POPDC1, is a tight junction-associated transmembrane protein that modulates epithelial-to-mesenchymal transition (EMT) via junctional signaling pathways. There have been no in vivo studies investigating the role of BVES in colitis. We hypothesized that BVES is critical for maintaining colonic epithelial integrity. At baseline, Bves-/- mouse colons demonstrate increased crypt height, elevated proliferation, decreased apoptosis, altered intestinal lineage allocation, and dysregulation of tight junctions with functional deficits in permeability and altered intestinal immunity. Bves-/- mice inoculated with Citrobacter rodentium had greater colonic injury, increased colonic and mesenteric lymph node bacterial colonization, and altered immune responses after infection. We propose that increased bacterial colonization and translocation result in amplified immune responses and worsened injury. Similarly, dextran sodium sulfate (DSS) treatment resulted in greater histologic injury in Bves-/- mice. Two different human cell lines (Caco2 and HEK293Ts) co-cultured with enteropathogenic E. coli showed increased attaching/effacing lesions in the absence of BVES. Finally, BVES mRNA levels were reduced in human ulcerative colitis (UC) biopsy specimens. Collectively, these studies suggest that BVES plays a protective role both in ulcerative and infectious colitis and identify BVES as a critical protector of colonic mucosal integrity.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Absorção Intestinal/fisiologia , Proteínas de Membrana/metabolismo , Adulto , Animais , Células CACO-2 , Moléculas de Adesão Celular , Linhagem Celular , Linhagem Celular Tumoral , Citrobacter rodentium/patogenicidade , Técnicas de Cocultura , Colo/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/metabolismo , Feminino , Células HEK293 , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Musculares , Permeabilidade/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
16.
Diabetes ; 55(11): 2974-85, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17065333

RESUMO

To investigate molecular mechanisms controlling islet vascularization and revascularization after transplantation, we examined pancreatic expression of three families of angiogenic factors and their receptors in differentiating endocrine cells and adult islets. Using intravital lectin labeling, we demonstrated that development of islet microvasculature and establishment of islet blood flow occur concomitantly with islet morphogenesis. Our genetic data indicate that vascular endothelial growth factor (VEGF)-A is a major regulator of islet vascularization and revascularization of transplanted islets. In spite of normal pancreatic insulin content and beta-cell mass, mice with beta-cell-reduced VEGF-A expression had impaired glucose-stimulated insulin secretion. By vascular or diffusion delivery of beta-cell secretagogues to islets, we showed that reduced insulin output is not a result of beta-cell dysfunction but rather caused by vascular alterations in islets. Taken together, our data indicate that the microvasculature plays an integral role in islet function. Factors modulating VEGF-A expression may influence islet vascularity and, consequently, the amount of insulin delivered into the systemic circulation.


Assuntos
Ilhotas Pancreáticas/irrigação sanguínea , Neovascularização Fisiológica , Pâncreas/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Velocidade do Fluxo Sanguíneo , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Pâncreas/crescimento & desenvolvimento , Pâncreas/fisiologia , Fator A de Crescimento do Endotélio Vascular/deficiência , Fator A de Crescimento do Endotélio Vascular/genética
17.
Circ Res ; 91(9): 761-8, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12411389

RESUMO

Formation of the coronary vessels is a fundamental event in heart development. Congenital abnormalities in the coronary system can have major deleterious effects on heart function. It is also possible that subtle variation in the patterning of coronary vessels has significant but uncharacterized effects on myocardial structure and function. In addition, generation of the coronary vascular system represents a complex system for analysis of regulation of cell fate determination, cell and epithelial migration, epithelial/mesenchymal transition, and patterning of a complex three-dimensional structure. In this review, we present the descriptive embryology of this process as well as the recent data that shed light on the unique developmental mechanisms underlying generation of coronary vessels. This review also attempts to identify areas where additional research is needed and highlights the questions that must be answered for a meaningful understanding of coronary vessel development.


Assuntos
Vasos Coronários/embriologia , Vasos Coronários/crescimento & desenvolvimento , Organogênese , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Vasos Coronários/anatomia & histologia , Células Epiteliais/citologia , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Miocárdio/citologia , Pericárdio/embriologia
18.
Circ Res ; 92(5): 525-31, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12600887

RESUMO

Recent work has demonstrated the importance of the epicardium in the development of the heart. During embryogenesis, these epithelial cells provide the progenitors for the epicardium, coronary smooth muscle, endothelium, and cardiac fibroblasts. The epicardium sends important signals to the developing myocardium. Still, analysis of these epithelial cells has lagged behind that of other cardiac cell types largely because of the lack of a defined experimental cell system in which epicardial cell differentiation can be studied. The present report examines the developmental potential of a cell line derived from rat epicardial mesothelial cells. These analyses demonstrate that the cell line retains many characteristics of the intact epithelium, including the ability to form a polarized epithelium and express many epicardial genes. Our data show for the first time that these cells retain the ability to produce mesenchyme in response to specific growth factors and, importantly, to generate smooth muscle cells. Thus, this study provides evidence that these cells can serve as an important model system for the analysis of the cellular and molecular mechanisms that govern epicardial development and function.


Assuntos
Linhagem Celular , Vasos Coronários/citologia , Pericárdio/fisiologia , Animais , Biomarcadores/análise , Diferenciação Celular , Polaridade Celular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/fisiologia , Substâncias de Crescimento/farmacologia , Mesoderma/citologia , Músculo Liso Vascular/citologia , Pericárdio/citologia , Pericárdio/embriologia , Pericárdio/metabolismo , RNA Mensageiro/biossíntese , Ratos , Células-Tronco/fisiologia
19.
Mol Biol Cell ; 27(13): 1990-9, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27146114

RESUMO

Microtubule (MT)-binding centromere protein F (CENP-F) was previously shown to play a role exclusively in chromosome segregation during cellular division. Many cell models of CENP-F depletion show a lag in the cell cycle and aneuploidy. Here, using our novel genetic deletion model, we show that CENP-F also regulates a broader range of cellular functions outside of cell division. We characterized CENP-F(+/+) and CENP-F(-/-) mouse embryonic fibroblasts (MEFs) and found drastic differences in multiple cellular functions during interphase, including cell migration, focal adhesion dynamics, and primary cilia formation. We discovered that CENP-F(-/-) MEFs have severely diminished MT dynamics, which underlies the phenotypes we describe. These data, combined with recent biochemical research demonstrating the strong binding of CENP-F to the MT network, support the conclusion that CENP-F is a powerful regulator of MT dynamics during interphase and affects heterogeneous cell functions.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Centrômero/metabolismo , Aberrações Cromossômicas , Segregação de Cromossomos , Fibroblastos , Interfase/genética , Cinetocoros/metabolismo , Camundongos , Camundongos Knockout , Microtúbulos/fisiologia , Mitose/genética , Ligação Proteica
20.
Mech Dev ; 117(1-2): 347-50, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12204283

RESUMO

Hole is a novel gene product isolated from a chick heart subtractive hybridization. Hole is a six-transmembrane protein (predicted size 311 and 317 amino acids in chick and mouse) expressed in the cardiac crescent and later in the myocardium of the developing chick heart, as well as in the fusing neural tube and ganglia. Mouse hole is not expressed in the developing heart, although it does share neural expression seen in the chick.


Assuntos
Encéfalo/embriologia , Coração/embriologia , Proteínas/genética , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Embrião de Galinha , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Miocárdio/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA