Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(31): 15570-15579, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311865

RESUMO

The type I TGFß receptor TGFßRI (encoded by Tgfbr1) was ablated in cartilage. The resulting Tgfbr1Col2 mice exhibited lethal chondrodysplasia. Similar defects were not seen in mice lacking the type II TGFß receptor or SMADs 2 and 3, the intracellular mediators of canonical TGFß signaling. However, we detected elevated BMP activity in Tgfbr1Col2 mice. As previous studies showed that TGFßRI can physically interact with ACVRL1, a type I BMP receptor, we generated cartilage-specific Acvrl1 (Acvrl1Col2 ) and Acvrl1/Tgfbr1 (Acvrl1/Tgfbr1Col2) knockouts. Loss of ACVRL1 alone had no effect, but Acvrl1/Tgfbr1Col2 mice exhibited a striking reversal of the chondrodysplasia seen in Tgfbr1Col2 mice. Loss of TGFßRI led to a redistribution of the type II receptor ACTRIIB into ACVRL1/ACTRIIB complexes, which have high affinity for BMP9. Although BMP9 is not produced in cartilage, we detected BMP9 in the growth plate, most likely derived from the circulation. These findings demonstrate that the major function of TGFßRI in cartilage is not to transduce TGFß signaling, but rather to antagonize BMP signaling mediated by ACVRL1.


Assuntos
Cartilagem/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Fator 2 de Diferenciação de Crescimento/genética , Camundongos , Camundongos Knockout , Receptor do Fator de Crescimento Transformador beta Tipo I/genética
2.
J Bone Miner Res ; 35(11): 2289-2300, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32634285

RESUMO

CCN1/Cyr61 is a dynamically expressed matricellular protein that serves regulatory functions in multiple tissues. Previous studies from our laboratory demonstrated that CCN1 regulates bone maintenance. Using an osteoblast and osteocyte conditional knockout mouse model (Ccn1OCN ), we found a significant decrease in trabecular and cortical bone mass in vivo, in part through suppression of Wnt signaling since the expression of the Wnt antagonist sclerostin (SOST) is increased in osteoblasts lacking CCN1. It has been established that parathyroid hormone (PTH) signaling also suppresses SOST expression in bone. We therefore investigated the interaction between CCN1 and PTH-mediated responses in this study. We find that loss of Ccn1 in osteoblasts leads to impaired responsiveness to anabolic intermittent PTH treatment in Ccn1OCN mice in vivo and in osteoblasts from these mice in vitro. Analysis of Ccn1OCN mice demonstrated a significant decrease in parathyroid hormone receptor-1 (PTH1R) expression in osteoblasts in vivo and in vitro. We investigated the regulatory role of a non-canonical integrin-binding domain of CCN1 because several studies indicate that specific integrins are critical to mechanotransduction, a PTH-dependent response, in bone. These data suggest that CCN1 regulates the expression of PTH1R through interaction with the αvß3 and/or αvß5 integrin complexes. Osteoblasts that express a mutant form of CCN1 that cannot interact with αvß3/ß5 integrin demonstrate a significant decrease in mRNA and protein expression of both PTH1R and αv integrin. Overall, these data suggest that the αvß3/ß5-binding domain of CCN1 is required to endow PTH signaling with anabolic activity in bone cells. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Proteína Rica em Cisteína 61/fisiologia , Mecanotransdução Celular , Osteoblastos/citologia , Hormônio Paratireóideo , Animais , Camundongos , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo , Via de Sinalização Wnt
3.
J Bone Miner Res ; 33(6): 1076-1089, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29351359

RESUMO

CYR61/CCN1 is a matricellular protein that resides in the extracellular matrix, but serves regulatory rather than structural roles. CYR61/CCN1 is found in mineralized tissues and has been shown to influence bone healing in vivo and osteogenic differentiation in vitro. In this study we generated Cyr61 bone-specific knockout mice to examine the physiological role of CYR61/CCN1 in bone development and maintenance in vivo. Extensive analysis of Cyr61 conditional knockout mice showed a significant decrease in both trabecular and cortical bone mass as compared to WT littermates. Our data suggest that CYR61/CCN1 exerts its effects on mature osteoblast/osteocyte function to modulate bone mass. Specifically, changes were observed in osteocyte/osteoblast expression of RankL, VegfA, and Sost. The increase in RankL expression was correlated with a significant increase in osteoclast number; decreased VegfA expression was correlated with a significant decrease in bone vasculature; increased Sost expression was associated with decreased Wnt signaling, as revealed by decreased Axin2 expression and increased adiposity in the bone marrow. Although the decreased number of vascular elements in bone likely contributes to the low bone mass phenotype in Cyr61 conditional knockout mice, this cannot explain the observed increase in osteoclasts and the decrease in Wnt signaling. We conducted in vitro assays using UMR-106 osteosarcoma cells to explore the role CYR61/CCN1 plays in modulating Sost mRNA and protein expression in osteocytes and osteoblasts. Overexpression of CYR61/CCN1 can suppress Sost expression in both control and Cyr61 knockout cells, and blocking Sost with siRNA can rescue Wnt responsiveness in Cyr61 knockout cells in vitro. Overall, our data suggest that CYR61/CCN1 modulates mature osteoblast and osteocyte function to regulate bone mass through angiogenic effects as well as by modulating Wnt signaling, at least in part through the Wnt antagonist Sost. © 2018 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Glicoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adiposidade , Animais , Medula Óssea/metabolismo , Osso e Ossos/irrigação sanguínea , Osso Esponjoso/metabolismo , Osso Cortical/metabolismo , Feminino , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Modelos Biológicos , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA