Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 48(19): 11421-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25209573

RESUMO

A novel low-cost method for the combined, real-time, and in situ determination of dissolved methane and carbon dioxide concentrations in freshwater ecosystems was designed and developed. This method is based on the continuous sampling of water from a freshwater ecosystem to a gas/liquid exchange membrane. Dissolved gas is transferred through the membrane to a continuous flow of high purity nitrogen, which is then measured by an off-axis integrated cavity output spectrometer (OA-ICOS). This method, called M-ICOS, was carefully tested in a laboratory and was subsequently applied to four lakes in Mexico and Alaska with contrasting climates, ecologies, and morphologies. The M-ICOS method allowed for the determination of dissolved methane and carbon dioxide concentrations with a frequency of 1 Hz and with a method detection limit of 2.76 × 10(-10) mol L(-1) for methane and 1.5 × 10(-7) mol L(-1) for carbon dioxide. These detection limits are below saturated concentrations with respect to the atmosphere and significantly lower than the minimum concentrations previously reported in lakes. The method is easily operable by a single person from a small boat, and the small size of the suction probe allows the determination of dissolved gases with a minimized impact on shallow freshwater ecosystems.


Assuntos
Dióxido de Carbono/análise , Lagos/química , Metano/análise , Alaska , Ecossistema , Membranas Artificiais , México , Análise Espectral/instrumentação , Análise Espectral/métodos
2.
Environ Sci Technol ; 47(20): 11676-84, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24025121

RESUMO

Methane is an effective greenhouse gas but has a short residence time in the atmosphere, and therefore, reductions in emissions can alleviate its greenhouse gas warming effect within a decadal time frame. Continuous and high temporal resolution measurements of methane concentrations and carbon isotopic ratios (δ(13)CH4) can inform on mechanisms of formation, provide constraints on emissions sources, and guide future mitigation efforts. We describe the development, validation, and deployment of a cavity-enhanced, near-infrared tunable diode laser absorption spectrometry system capable of quantifying δ(13)CH4 at ambient methane concentrations. Laboratory validation and testing show that the instrument is capable of operating over a wide dynamic range of methane concentration and provides a measurement precision for δ(13)CH4 of better than ± 0.5 ‰ (1σ) over 1000 s of data averaging at ambient methane concentrations. The analyzer is accurate to better than ± 0.5 ‰, as demonstrated by measurements of characterized methane/air samples with minimal dependence (<1 ‰) of measured carbon isotope ratio on methane concentration. Deployment of the instrument at a marsh over multiple days demonstrated how methane fluxes varied by an order of magnitude over 2 day deployment periods, and showed a 17 ‰ variability in δ(13)CH4 of the emitted methane during the growing season.


Assuntos
Lasers Semicondutores , Metano/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Absorção , Isótopos de Carbono , Laboratórios , Padrões de Referência , Reprodutibilidade dos Testes
3.
Appl Spectrosc ; 62(1): 59-65, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18230209

RESUMO

A spectroscopic analyzer has been developed for rapid, accurate quantification of acetylene and methyl acetylene in hydrocarbon cracked gas processing plants. The system utilizes off-axis integrated output cavity spectroscopy to measure the near-infrared, cavity-enhanced absorption spectrum of ethylene, methyl acetylene, and acetylene and employs a chemometric data analysis strategy to quantify the respective constituents. Initial tests verified that the instrument is capable of measuring, <0.050 ppmv of acetylene, has a precision of +/-0.025 ppmv, and can accurately determine acetylene concentrations with comparable accuracy to a gas chromatograph (+/-0.1 ppmv) in an actual process stream composition matrix under plant operating conditions. Subsequently, the prototype analyzer was installed in a hydrocarbon facility for field-trials, where its rapid response (< or =30 seconds or better) allowed it to measure transient acetylene and methyl acetylene fluctuations that were too fast for conventional methodologies. Moreover, the analyzer showed an extended dynamic range that enabled measurement of very high acetylene levels (0-1000 ppmv) during abnormal plant operations. Finally, two commercial acetylene analyzer systems with stream-switching capabilities were implemented in an industrial facility and initial results are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA