Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4478-4484, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584591

RESUMO

We propose minimal transport experiments in the coherent regime that can probe the chirality of twisted moiré structures. We show that only with a third contact and in the presence of an in-plane magnetic field (or another time-reversal symmetry breaking effect) a chiral system may display nonreciprocal transport in the linear regime. We then propose to use the third lead as a voltage probe and show that opposite enantiomers give rise to different voltage drops on the third lead. Additionally, in the scenario of layer-discriminating contacts, the third lead can serve as a current probe capable of detecting different handedness even in the absence of a magnetic field. In a complementary configuration, applying opposite voltages on the two layers of the third lead gives rise to a chiral (super)current in the absence of a source-drain voltage whose direction is determined by its chirality.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893531

RESUMO

The use of graphene in surface plasmon resonance sensors, covering a metallic (plasmonic) film, has a number of demonstrated advantages, such as protecting the film against corrosion/oxidation and facilitating the introduction of functional groups for selective sensing. Recently, a number of works have claimed that few-layer graphene can also increase the sensitivity of the sensor. However, graphene was treated as an isotropic thin film, with an out-of-plane refractive index that is identical to the in-plane index. Here, we critically examine the role of single and few layers of graphene in the sensitivity enhancement of surface plasmon resonance sensors. Graphene is introduced over the metallic film via three different descriptions: as an atomic-thick two-dimensional sheet, as a thin effective isotropic material (same conductivity in the three coordinate directions), and as an non-isotropic layer (different conductivity in the perpendicular direction to the two-dimensional plane). We find that only the isotropic layer model, which is known to be incorrect for the optical modeling of graphene, provides sizable sensitivity increases, while the other, more accurate, models lead to a negligible contribution to the sensitivity.

3.
Nanoscale Adv ; 3(1): 272-278, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36131879

RESUMO

Monolayer transition-metal dichalcogenides (TMDCs) present high second-order optical nonlinearity, which is extremely desirable for, e.g., frequency conversion in nonlinear photonic devices. On the other hand, the atomic thickness of 2D materials naturally leads to low frequency converted intensities, highlighting the importance of designing structures that enhance the nonlinear response for practical applications. A number of methods to increase the pump electric field at 2D materials have been reported, relying on complex plasmonic and/or metasurface structures. Here, we take advantage of the fact that unstructured substrates with a low refractive index naturally maximize the pump field at a dielectric interface, offering a simple means to promote enhanced nonlinear optical effects. In particular, we measured second harmonic generation (SHG) in MoS2 and WS2 on fluorine tin oxide (FTO), which presents an epsilon-near zero point near our 1550 nm pump wavelength. Polarized SHG measurements reveal an SHG intensity that is one order of magnitude higher on FTO than on a glass substrate.

4.
Nanoscale ; 12(28): 15383-15392, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32656559

RESUMO

The transport properties of a twisted bilayer graphene barrier are investigated for various twist angles. Remarkably, for small twist angles around the magic angle θm ∼ 1.05°, the local currents around the AA-stacked regions are strongly enhanced compared to the injected electron rate. Furthermore, the total and counterflow (magnetic) current patterns show high correlations in these regions, giving rise to well-defined magnetic moments that form a magnetic Moiré superlattice. The orientation and magnitude of these magnetic moments change as a function of the gate voltage and possible implications for emergent spin-liquid behaviour are discussed.

5.
Nanoscale ; 11(44): 21218-21226, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31663567

RESUMO

The nanophotonics of van der Waals (vdW) materials relies critically on the electromagnetic properties of polaritons defined on sub-diffraction length scales. Here, we use a full electromagnetic Hertzian dipole antenna (HDA) model to describe the hyperbolic phonon polaritons (HP2s) in vdW crystals of hexagonal boron nitride (hBN) on a gold surface. The HP2 waves are investigated by broadband synchrotron infrared nanospectroscopy (SINS) which covers the type I and type II hyperbolic bands simultaneously. Basically, polariton waves, observed by SINS, are assigned to the resultant electric field from the summation over the irradiated electric fields of dipoles distributed along the crystal edge and at the tip location and a non-propagating field. The values of polariton momenta and damping extracted from the HDA model present excellent agreement with theoretical predictions. Our analysis shows that the confinement factor of type I HP2s exceeds that of the type II ones by up to a factor of 3. We extract anti-parallel group velocities (vg) for type I (vg,typeI = -0.005c, c is the light velocity in a vacuum) in relation to type II (vg,typeII = 0.05c) polaritonic pulses, with lifetimes of ∼0.6 ps and ∼0.3 ps, respectively. Furthermore, by incorporating consolidated optical-near field theory into the HDA model, we simulate real-space images of polaritonic standing waves for hBN crystals of different shapes. This approach reproduces the experiments with a minimal computational cost. Thus, it is demonstrated that the HDA modelling self-consistently explains the measured complex-valued polariton near-field, while being a general approach applicable to other polariton types, like plasmon- and exciton-polaritons, active in the wide range of vdW materials.

6.
Beilstein J Nanotechnol ; 7: 1983-1990, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144546

RESUMO

We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances as well as antiresonances in the transmission spectrum. These effects are shown to mimic an atomic chain like behavior in a two dimensional atomic crystal.

7.
Nanoscale ; 7(37): 15300-9, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26325579

RESUMO

We investigate the impact of strained nanobubbles on the conductance characteristics of graphene nanoribbons using a combined molecular dynamics - tight-binding simulation scheme. We describe in detail how the conductance, density of states, and current density of zigzag or armchair graphene nanoribbons are modified by the presence of a nanobubble. In particular, we establish that low-energy electrons can be confined in the vicinity of or within the nanobubbles by the delicate interplay among the pseudomagnetic field pattern created by the shape of the bubble, mode mixing, and substrate interaction. The coupling between confined evanescent states and propagating modes can be enhanced under different clamping conditions, which translates into Fano resonances in the conductance traces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA