Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Addict Biol ; 26(1): e12851, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31691406

RESUMO

The lateral septum (LS) is a limbic nucleus interconnected with several brain areas involved in the regulation of mood and reward. Vasopressin (AVP) is a neuropeptide that has been related to the effects of drugs of abuse, but its role in the addictive process is poorly understood. LS expresses a high density of AVP 1A receptors (V1A ). The aim of this work was to examine whether the modulation of LS AVP system affects the behavioral and neurochemical responses to amphetamine (AMPH) in male rats. Our results show that AMPH-induced conditioned place preference (CPP) produces a decrease in LS AVP content. Besides, we demonstrate that the microinjection of AVP in the LS impairs the expression of AMPH-induced CPP and that this effect is mediated by the activation of the V1A receptor in the LS. AVP microinjection in the LS elicited a decrease in neuronal activity in the nucleus accumbens (NAc) in animals subjected to AMPH conditioning. Finally, AVP microinjection in the LS decreased dopamine (DA) release in the NAc. Overall, our data demonstrate that intra-LS AVP diminishes the expression of AMPH conditioning behavior while decreasing neuronal activity and DA release in the NAc. Presumably, the effects of AVP in the LS produce an inhibition of GABAergic projections to the VTA, increasing local inhibitory tone in this nucleus, which in turn reduces the activity of DA projections to NAc. Thus, these results contribute to the knowledge about the role of AVP in LS in regulating the reward circuit and addictive like behaviors.


Assuntos
Anfetamina/farmacologia , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Vasopressinas/farmacologia , Animais , Estimulantes do Sistema Nervoso Central , Condicionamento Operante/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos
2.
Front Pharmacol ; 15: 1411927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135790

RESUMO

Introduction: The chronic use of psychostimulants increases the risk of addiction and, there is no specific pharmacologic treatment for psychostimulant addiction. The vasopressin (AVP) system is a possible pharmacological target in drug addiction. Previous results obtained in our laboratory showed that amphetamine (AMPH) treatment decreases lateral septum (LS) AVP levels in male rats, and AVP microinjection in LS decreases addictive-like behavior. The aim of the present work was to investigate the effect of AMPH treatment on LS AVP levels and the effect of LS AVP administration on the expression of AMPH-conditioned place preference (CPP) in female rats. The secondary objectives were to study the effect of LS AVP administration on LS GABA and glutamate release in male and female rats and on nucleus accumbens (NAc) dopamine (DA) release in female rats. Methods: Female rats were conditioned with AMPH (1.5 mg/kg i.p.) or saline for 4 days. Results: Conditioning with AMPH did not change LS AVP content in females. However, AVP microinjection into the LS decreased the expression of conditioned place preference (CPP) to AMPH. Glutamate and GABA extracellular levels in the LS induced by AVP were studied in males and females. NAc GABA and DA extracellular levels induced by LS AVP microinjection in female rats were measured by microdialysis. In males, AVP perfusion produced a significant increase in LS GABA extracellular levels; however, a decrease in GABA extracellular levels was observed in females. Both in males and females, LS AVP perfusion did not produce changes in LS glutamate extracellular levels. Microinjection of AVP into the LS did not change GABA or DA extracellular levels in the NAc of females. Discussion: Therefore, AVP administration into the LS produces different LS-NAc neurochemical responses in females than males but decreases CPP to AMPH in both sexes. The behavioral response in males is due to a decrease in NAc DA levels, but in females, it could be due to a preventive increase in NAc DA levels. It is reasonable to postulate that, in females, the decrease in conditioning produced by AVP microinjection is influenced by other factors inherent to sex, and an effect on anxiety cannot be discarded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA