Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.978
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942990

RESUMO

The immunological mechanisms underlying chronic colitis are poorly understood. T follicular helper (TFH) cells are critical in helping B cells during germinal center reactions. In a T cell transfer colitis model, a lymphoid structure composed of mature dendritic cells (DCs) and TFH cells was found within T cell zones of colonic lymphoid follicles. TFH cells were required for mature DC accumulation, the formation of DC-T cell clusters and colitis development. Moreover, DCs promoted TFH cell differentiation, contributing to colitis development. A lineage-tracing analysis showed that, following migration to the lamina propria, TFH cells transdifferentiated into long-lived pathogenic TH1 cells, promoting colitis development. Our findings have therefore demonstrated the reciprocal regulation of TFH cells and DCs in colonic lymphoid follicles, which is critical in chronic colitis pathogenesis.

2.
Immunity ; 54(4): 673-686.e4, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852831

RESUMO

The interleukin (IL)-17 family, consisting of six members, promotes host defense but can in some context promote the development of autoimmune disease. Here, we examined the role of IL-17D, a poorly understood member in the IL-17 family. IL-17D was expressed primarily by colonic epithelial cells. Il17d-/- mice were more susceptible to acute colitis, bacterial infection and experimentally induced colon cancer than their wildtype counterparts. Il17d deficiency impaired IL-22 production by group 3 innate lymphoid cells (ILC3s) and reduced expression of IL-22-dependent antimicrobial peptides, RegIIIß and RegIIIγ, in colon tissue at steady state and in colitis; this was associated with changes in microbial composition and dysbiosis. Protein purification studies revealed that IL-17D bound not canonical IL-17 receptors, but rather CD93, a glycoprotein expressed on mature ILC3s. Mice lacking Cd93 in ILC3s exhibited impaired IL-22 production and aggravated colonic inflammation in experimental colitis. Thus, an IL-17D-CD93 axis regulates ILC3 function to preserve intestinal homeostasis.


Assuntos
Imunidade Inata/imunologia , Interleucina-27/imunologia , Linfócitos/imunologia , Glicoproteínas de Membrana/imunologia , Animais , Linhagem Celular , Colite/imunologia , Colo/imunologia , Células Epiteliais/imunologia , Interleucinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Interleucina 22
3.
Mol Cell ; 82(8): 1528-1542.e10, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35245436

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a global health concern with no approved drugs. High-protein dietary intervention is currently the most effective treatment. However, its underlying mechanism is unknown. Here, using Drosophila oenocytes, the specialized hepatocyte-like cells, we find that dietary essential amino acids ameliorate hepatic steatosis by inducing polyubiquitination of Plin2, a lipid droplet-stabilizing protein. Leucine and isoleucine, two branched-chain essential amino acids, strongly bind to and activate the E3 ubiquitin ligase Ubr1, targeting Plin2 for degradation. We further show that the amino acid-induced Ubr1 activity is necessary to prevent steatosis in mouse livers and cultured human hepatocytes, providing molecular insight into the anti-NAFLD effects of dietary protein/amino acids. Importantly, split-intein-mediated trans-splicing expression of constitutively active UBR2, an Ubr1 family member, significantly ameliorates obesity-induced and high fat diet-induced hepatic steatosis in mice. Together, our results highlight activation of Ubr1 family proteins as a promising strategy in NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Aminoácidos Essenciais/metabolismo , Aminoácidos Essenciais/farmacologia , Aminoácidos Essenciais/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ubiquitinação
4.
EMBO J ; 42(19): e112814, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37635626

RESUMO

The regulation of autophagy initiation is a key step in autophagosome biogenesis. However, our understanding of the molecular mechanisms underlying the stepwise assembly of ATG proteins during this process remains incomplete. The Rab GTPase Ypt1/Rab1 is recognized as an essential autophagy regulator. Here, we identify Atg23 and Atg17 as binding partners of Ypt1, with their direct interaction proving crucial for the stepwise assembly of autophagy initiation complexes. Disruption of Ypt1-Atg23 binding results in significantly reduced Atg9 interactions with Atg11, Atg13, and Atg17, thus preventing the recruitment of Atg9 vesicles to the phagophore assembly site (PAS). Likewise, Ypt1-Atg17 binding contributes to the PAS recruitment of Ypt1 and Atg1. Importantly, we found that Ypt1 is phosphorylated by TOR at the Ser174 residue. Converting this residue to alanine blocks Ypt1 phosphorylation by TOR and enhances autophagy. Conversely, the Ypt1S174D phosphorylation mimic impairs both PAS recruitment and activation of Atg1, thus inhibiting subsequent autophagy. Thus, we propose TOR-mediated Ypt1 as a multifunctional assembly factor that controls autophagy initiation via its regulation of the stepwise assembly of ATG proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Fagossomos/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Immunol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975727

RESUMO

Inactivating mutations of Foxp3, the master regulator of regulatory T cell development and function, lead to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in mice and humans. IPEX is a fatal autoimmune disease, with allogeneic stem cell transplant being the only available therapy. In this study, we report that a single dose of adeno-associated virus (AAV)-IL-27 to young mice with naturally occurring Foxp3 mutation (Scurfy mice) substantially ameliorates clinical symptoms, including growth retardation and early fatality. Correspondingly, AAV-IL-27 gene therapy significantly prevented naive T cell activation, as manifested by downregulation of CD62L and upregulation of CD44, and immunopathology typical of IPEX. Because IL-27 is known to induce IL-10, a key effector molecule of regulatory T cells, we evaluated the contribution of IL-10 induction by crossing IL-10-null allele to Scurfy mice. Although IL-10 deficiency does not affect the survival of Scurfy mice, it largely abrogated the therapeutic effect of AAV-IL-27. Our study revealed a major role for IL-10 in AAV-IL-27 gene therapy and demonstrated that IPEX is amenable to gene therapy.

6.
Nucleic Acids Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880495

RESUMO

Histone modifications are typically recognized by chromatin-binding protein modules (referred to as 'readers') to mediate fundamental processes such as transcription. Lysine ß-hydroxybutyrylation (Kbhb) is a new type of histone mark that couples metabolism to gene expression. However, the readers that prefer histone Kbhb remain elusive. This knowledge gap should be filled in order to reveal the molecular mechanism of this epigenetic regulation. Herein, we developed a chemical proteomic approach, relying upon multivalent photoaffinity probes to capture binders of the mark, and identified ENL as a novel target of H3K9bhb. Biochemical studies and CUT&Tag analysis further suggested that ENL favorably binds to H3K9bhb, and co-localizes with it on promoter regions to modulate gene expression. Notably, disrupting the interaction between H3K9bhb and ENL via structure-based mutation led to the suppressed expression of genes such MYC that drive cell proliferation. Together, our work offered a chemoproteomics approach and identified ENL as a novel histone ß-hydroxybutyrylation effector that regulates gene transcription, providing new insight into the regulation mechanism and function of histone Kbhb.


Elucidating the binding partners of histone post-translational modifications (hPTMs) is key to understanding epigenetic regulatory pathways. Lysine ß-hydroxybutyrylation (Kbhb) is a novel hPTM that couples metabolism to transcription. However, the effectors reading this mark are poorly understood as the Kbhb-mediated protein­protein interactions are weak and transient. Here, we presented a quantitative chemical proteomics approach using multivalent photoaffinity probes to robustly capture interactors of this mark. Thus, we identified ENL as a novel binder of Kbhb of histone H3 lysine 9 (H3K9bhb). Biochemical studies and CUT&Tag analysis further revealed that ENL recognizes H3K9bhb and co-localizes with it on gene promoters to modulate transcription and tumorigenesis. This study highlights ENL as a histone Kbhb reader for the regulation of transcription.

7.
J Virol ; : e0040524, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874362

RESUMO

Human T-cell leukemia virus type 1 (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Mutational analysis has demonstrated that the tumor suppressor, F-box and WD repeat domain containing 7 (FBXW7/FBW7/CDC4), is mutated in primary ATL patients. However, even in the absence of genetic mutations, FBXW7 substrates are stabilized in ATL cells, suggesting additional mechanisms can prevent FBXW7 functions. Here, we report that the viral oncoprotein Tax represses FBXW7 activity, resulting in the stabilization of activated Notch intracellular domain, c-MYC, Cyclin E, and myeloid cell leukemia sequence 1 (BCL2-related) (Mcl-1). Mechanistically, we demonstrate that Tax directly binds to FBXW7 in the nucleus, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 substrates. In support of the nuclear role of Tax, a non-degradable form of the nuclear factor kappa B subunit 2 (NFκB2/p100) was found to delocalize Tax to the cytoplasm, thereby preventing Tax interactions with FBXW7 and Tax-mediated inhibition of FBXW7. Finally, we characterize a Tax mutant that is unable to interact with FBXW7, unable to block FBXW7 tumor suppressor functions, and unable to effectively transform fibroblasts. These results demonstrate that HTLV-I Tax can inhibit FBXW7 functions without genetic mutations to promote an oncogenic state. These results suggest that Tax-mediated inhibition of FBXW7 is likely critical during the early stages of the cellular transformation process. IMPORTANCE: F-box and WD repeat domain containing 7 (FBXW7), a critical tumor suppressor of human cancers, is frequently mutated or epigenetically suppressed. Loss of FBXW7 functions is associated with stabilization and increased expression of oncogenic factors such as Cyclin E, c-Myc, Mcl-1, mTOR, Jun, and Notch. In this study, we demonstrate that the human retrovirus human T-cell leukemia virus type 1 oncoprotein Tax directly interacts with FBXW7, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 cellular substrates. We further demonstrate that a Tax mutant unable to interact with and inactivate FBXW7 loses its ability to transform primary fibroblasts. Collectively, our results describe a novel mechanism used by a human tumor virus to promote cellular transformation.

8.
Nat Chem Biol ; 19(7): 855-864, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36805701

RESUMO

Tyrosine sulfation is a common posttranslational modification in mammals. To date, it has been thought to be limited to secreted and transmembrane proteins, but little is known about tyrosine sulfation on nuclear proteins. Here we report that SULT1B1 is a histone sulfotransferase that can sulfate the tyrosine 99 residue of nascent histone H3 in cytosol. The sulfated histone H3 can be transported into the nucleus and majorly deposited in the promoter regions of genes in chromatin. While the H3Y99 residue is buried inside octameric nucleosome, dynamically regulated subnucleosomal structures provide chromatin-H3Y99sulf the opportunity of being recognized and bound by PRMT1, which deposits H4R3me2a in chromatin. Disruption of H3Y99sulf reduces PRMT1 binding to chromatin, H4R3me2a level and gene transcription. These findings reveal the mechanisms underlying H3Y99 sulfation and its cross-talk with H4R3me2a to regulate gene transcription. This study extends the spectrum of tyrosine sulfation on nuclear proteins and the repertoire of histone modifications regulating chromatin functions.


Assuntos
Histonas , Tirosina , Animais , Histonas/metabolismo , Tirosina/genética , Cromatina , Proteínas Nucleares/metabolismo , Transcrição Gênica , Mamíferos/genética
9.
EMBO Rep ; 24(9): e55494, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37493024

RESUMO

Human CST (CTC1-STN1-TEN1) is a ssDNA-binding complex that interacts with the replisome to aid in stalled fork rescue. We previously found that CST promotes telomere replication to maintain genomic integrity via G-quadruplex (G4) resolution. However, the detailed mechanism by which CST resolves G4s in vivo and whether additional factors are involved remains unclear. Here, we identify RECQ4 as a novel CST-interacting partner and show that RECQ4 can unwind G4 structures in vitro using a FRET assay. Moreover, G4s accumulate at the telomere after RECQ4 depletion, resulting in telomere dysfunction, including the formation of MTSs, SFEs, and TIFs, suggesting that RECQ4 is crucial for telomere integrity. Furthermore, CST is also required for RECQ4 telomere or chromatin localization in response to G4 stabilizers. RECQ4 is involved in preserving genomic stability by CST and RECQ4 disruption impairs restart of replication forks stalled by G4s. Overall, our findings highlight the essential roles of CST and RECQ4 in resolving G-rich regions, where they collaborate to resolve G4-induced replication deficiencies and maintain genomic homeostasis.


Assuntos
Replicação do DNA , Quadruplex G , Humanos , Proteínas de Ligação a Telômeros/genética , Homeostase do Telômero , Telômero/metabolismo
10.
J Immunol ; 211(5): 895-902, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459051

RESUMO

IL-27 is a pleiotropic cytokine that exhibits stimulatory/regulatory functions on multiple lineages of immune cells and has a potential to be used as a therapeutic for cancer. We have recently demonstrated that administration of IL-27 producing adeno-associated virus (AAV-IL-27) exhibits potent inhibition of tumor growth in mouse models. In this study, we demonstrate that AAV-IL-27 treatment leads to significant expansion of CD11b+Gr1+ myeloid cells. AAV-IL-27-induced expansion of CD11b+Gr1+ cells is IL-27R-dependent and requires Stat3 signaling, but it is inhibited by Stat1 signaling. AAV-IL-27 treatment does not increase the self-renewal capacity of CD11b+Gr1+ cells but induces significant expansion of Lin-Sca1+c-Kit+ (LSK) and granulocyte-monocyte progenitor cells. Despite exhibiting significant suppression of T cells in vitro, IL-27-induced CD11b+Gr1+ cells lost the tumor-promoting activity in vivo and overall play an antitumor role. In tumors from AAV-IL-27-treated mice, CD11b+Gr1+ cells are largely F4/80+ and express high levels of MHC class I/II and M1 macrophage markers. Thus, IL-27 gene therapy induces Stat3-mediated expansion of CD11b+Gr1+ myeloid cells and promotes accumulation of M1 macrophages in the tumor microenvironment.


Assuntos
Interleucina-27 , Camundongos , Animais , Microambiente Tumoral , Macrófagos , Células Mieloides , Linfócitos T , Antígeno CD11b
11.
Mol Cell ; 65(1): 52-65, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27916661

RESUMO

Tetrameric assembly of channel subunits in the endoplasmic reticulum (ER) is essential for surface expression and function of K+ channels, but the molecular mechanism underlying this process remains unclear. In this study, we found through genetic screening that ER-located J-domain-containing chaperone proteins (J-proteins) are critical for the biogenesis and physiological function of ether-a-go-go-related gene (ERG) K+ channels in both Caenorhabditis elegans and human cells. Human J-proteins DNAJB12 and DNAJB14 promoted tetrameric assembly of ERG (and Kv4.2) K+ channel subunits through a heat shock protein (HSP) 70-independent mechanism, whereas a mutated DNAJB12 that did not undergo oligomerization itself failed to assemble ERG channel subunits into tetramers in vitro and in C. elegans. Overexpressing DNAJB14 significantly rescued the defective function of human ether-a-go-go-related gene (hERG) mutant channels associated with long QT syndrome (LQTS), a condition that predisposes to life-threatening arrhythmia, by stabilizing the mutated proteins. Thus, chaperone proteins are required for subunit stability and assembly of K+ channels.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Canal de Potássio ERG1/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Canais de Potássio/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular Tumoral , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética , Células HEK293 , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Potenciais da Membrana , Chaperonas Moleculares , Mutação , Miócitos Cardíacos/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Interferência de RNA , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Fatores de Tempo , Transfecção
12.
Proc Natl Acad Sci U S A ; 119(44): e2200944119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36288285

RESUMO

Neuron-immune interaction through secreted factors contributes significantly to the complex microenvironment in the central nervous system that could alter cell functionalities and fates in both physiological and pathological conditions, which remains poorly characterized at the single-cell level. Herein, using a spatially patterned antibody barcode microchip, we realized the mapping of 12 different secretomes, covering cytokines, neurotrophic factors (NFs), and neuron-derived exosomes (NDEs) from high-throughput, paired single cells (≥ 600) simultaneously under normal conditions and an Alzheimer's disease (AD) model induced with amyloid beta protein 1-42 (Aß1-42). We applied the platform to analyze the secretion profiles from paired neuron-macrophage and neuron-microglia single cells with human cell lines. We found that pairwise neuron-macrophage interaction would trigger immune responses and attenuate neuron cells' secretion, while neuron-microglia interaction generally results in opposite outcomes in secretion. When neuron cells are induced with Aß1-42 protein into the AD model, both neuron-macrophage and neuron-microglia interactions lead to increased cytokines and NDEs and decreased NFs. Further analysis of AD patients' serum showed that NDEs were significantly higher in patients' samples than in the control group, validating our observation from the interaction assay. Furthermore, we resolved previously undifferentiated heterogeneity underlying the secretions from single-neuron cells. We found that the NDE and NF secretion was less dependent on the paracrine signaling between one another and that secretions from neuron cells would attenuate after differentiation with Aß1-42. This study demonstrates the mapping of the different secretomes from paired neuron-immune single cells, providing avenues for understanding how neurons and immune cells interact through the complex secretome network.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Secretoma , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Microglia/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Fatores de Crescimento Neural/metabolismo
13.
Nano Lett ; 24(18): 5631-5638, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669049

RESUMO

Perovskite light-emitting diodes (PeLEDs) based on CsPb(Br/I)3 nanocrystals (NCs) usually suffer from severe spectral instability under operating voltage due to the poor-quality PeNCs. Herein, zeolite was utilized to prepare high-quality CsPb(Br/I)3 NCs via promoting the homogeneous nucleation and growth and suppressing the Ostwald ripening of PeNCs. In addition, the decomposed zeolite interacted strongly with PeNCs through Pb-O bonds and hydrogen bonds, which inhibited the formation of defects and suppressed halide ion migration, leading to an improved photoluminescence quantum yield (PLQY) and enhanced stability of PeNCs. Moreover, the strong binding affinity of decomposed zeolite to PeNCs contributed to the formation of homogeneous perovskite films with high PLQY. As a result, pure-red PeLEDs with Commission International de I'Eclairage (CIE) coordinates of (0.705, 0.291) were fabricated, approaching the Rec. 2020 red primary color. The devices achieved a peak external quantum efficiency of 23.0% and outstanding spectral stability.

14.
Nano Lett ; 24(23): 6997-7003, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38721805

RESUMO

We report that constructed Au nanoclusters (NCs) can afford amazing white emission synergistically dictated by the Au(0)-dominated core-state fluorescence and Au(I)-governed surface-state phosphorescence, with record-high absolute quantum yields of 42.1% and 53.6% in the aqueous solution and powder state, respectively. Moreover, the dynamic color tuning is achieved in a wide warm-to-cold white-light range (with the correlated color temperature varied from 3426 to 24 973 K) by elaborately manipulating the ratio of Au(0) to Au(I) species and thus the electron transfer rate from staple motif to metal kernel. This study not only exemplifies the successful integration of multiple luminescent centers into metal NCs to accomplish efficient white-light emission but also inspires a feasible pathway toward customizing the optical properties of metal NCs by regulating electron transfer kinetics.

15.
Nano Lett ; 24(4): 1268-1276, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241736

RESUMO

While quasi-two-dimensional (quasi-2D) perovskites have good properties of cascade energy transfer, high exciton binding energy, and high quantum efficiency, which will benefit high-efficiency blue PeLEDs, inefficient domain distribution management and unbalanced carrier transport impede device performance improvement. Herein, (2-(9H-carbazol-9-yl)ethyl)phosphonic acid (2PACz) and methyl 2-aminopyridine-4-carboxylate (MAC) were simultaneously introduced to a blue quasi-2D perovskite film. Relying on the synergistic effect of 2PACz and MAC, it not only modulates the phase distribution inhibiting the n = 2 phase but also greatly improves the electrical property of the quasi-2D perovskite film. As a result, the as-modified blue quasi-2D PeLED demonstrated an external quantum efficiency (EQE) of 17.08% and a luminance of 10142 cd m-2. This study exemplifies the synergistic effect among dual additives and offers a new effective additive strategy modulating phase distribution and building balanced carrier transport, which paves the way for the fabrication of highly efficient blue PeLEDs.

16.
J Biol Chem ; 299(8): 105071, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474102

RESUMO

Paraspeckles (PS) are nuclear structures scaffolded by the long noncoding RNA NEAT1 and protein components such as NONO and SFPQ. We previously found that the upregulation of RNA N6-methyl-adenosine (m6A) demethylase ALKBH5 facilitates hypoxia-induced paraspeckle assembly through erasing m6A marks on NEAT1, thus stabilizing it. However, it remains unclear how these processes are spatiotemporally coordinated. Here we discover that ALKBH5 specifically binds to proteins in PS and forms phase-separated droplets that are incorporated into PS through its C-terminal intrinsically disordered region (cIDR). Upon exposure to hypoxia, rapid ALKBH5 condensation in PS induces m6A demethylation of NEAT1, which further facilitates PS formation before the upregulation of ALKBH5 expression. In cells expressing ALKBH5 lacking cIDR, PS fail to be formed in response to hypoxia, accompanied with insufficient m6A demethylation of NEAT1 and its destabilization. We also demonstrate that ALKBH5-cIDR is indispensable for hypoxia-induced effects such as cancer cell invasion. Therefore, our study has identified the role of ALKBH5 in phase separation as the molecular basis of the positive feedback loop for PS formation between ALKBH5 incorporation into PS and NEAT1 stabilization.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Paraspeckles , RNA Longo não Codificante , Humanos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Hipóxia , Paraspeckles/metabolismo , RNA Longo não Codificante/genética , Ativação Transcricional , Regulação para Cima
17.
Stroke ; 55(4): 883-892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38465591

RESUMO

BACKGROUND: The efficacy of thrombolysis (IVT) in minor stroke (National Institutes of Health Stroke Scale score, 0-5) remains inconclusive. The aim of this study is to compare the effectiveness and safety of IVT with best medical therapy (BMT) by means of a systematic review and meta-analysis of randomized controlled trials and observational studies. METHODS: We searched the PubMed, Embase, Cochrane Library, and Web of Science databases to obtain articles related to IVT in minor stroke from inception until August 10, 2023. The primary outcome was an excellent functional outcome, defined as a modified Rankin Scale score of 0 or 1 at 90 days. The associations were calculated for the overall and preformulated subgroups by using the odds ratios (ORs). This study was registered with PROSPERO (CRD42023445856). RESULTS: A total of 20 high-quality studies, comprised of 13 397 patients with acute minor ischemic stroke, were included. There were no significant differences observed in the modified Rankin Scale scores of 0 to 1 (OR, 1.10 [95% CI, 0.89-1.37]) and 0 to 2 (OR, 1.16 [95% CI, 0.95-1.43]), mortality rates (OR, 0.67 [95% CI, 0.39-1.15]), recurrent stroke (OR, 0.89 [95% CI, 0.57-1.38]), and recurrent ischemic stroke (OR, 1.09 [95% CI, 0.68-1.73]) between the IVT and BMT group. There were differences between the IVT group and the BMT group in terms of early neurological deterioration (OR, 1.81 [95% CI, 1.17-2.80]), symptomatic intracranial hemorrhage (OR, 7.48 [95% CI, 3.55-15.76]), and hemorrhagic transformation (OR, 4.73 [95% CI, 2.40-9.34]). Comparison of modified Rankin Scale score of 0 to 1 remained unchanged in subgroup patients with nondisabling deficits or compared with those using antiplatelets. CONCLUSIONS: These findings indicate that IVT does not yield significant improvement in the functional prognosis of patients with acute minor ischemic stroke. Additionally, it is associated with an increased risk of symptomatic intracranial hemorrhage when compared with the BMT. Moreover, IVT may not have superiority over BMT in patients with nondisabling deficits or those using antiplatelets.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ativador de Plasminogênio Tecidual/uso terapêutico , Fibrinolíticos/uso terapêutico , Terapia Trombolítica/efeitos adversos , Isquemia Encefálica/terapia , Resultado do Tratamento , Acidente Vascular Cerebral/terapia , Hemorragias Intracranianas/induzido quimicamente , Trombectomia , AVC Isquêmico/tratamento farmacológico , Estudos Observacionais como Assunto
18.
Anal Chem ; 96(8): 3470-3479, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38336002

RESUMO

A self-powered photoelectrochemical (PEC) sensor has attracted widespread attention in the field of analysis, but it is still a challenge to enhance its response signals with rational strategies. In this work, a novel self-powered PEC sensing platform was developed for the quantitative detection of gatifloxacin (GAT) based on a photofuel cell consisting of two types of ZIF-derived ZnO/Co3O4 heterojunctions as photoactive materials. Peroxymonosulfate (PMS) was first used as an electron acceptor coupled with a photofuel cell to develop a synergetic signal amplification strategy. In a dual-photoelectrode system, the PMS activation on the ZnO@Co3O4 photocathode not only accelerated electron transfer from the Co3O4@ZnO photoanode to achieve strong signal intensity but also improved the sensing sensitivity by the oxidation reaction of generated highly active radicals to GAT. Compared with the absence of electron acceptors, the introduction of PMS produced a 2-fold enhancement in the signal output performance and a more than 72-fold improvement in the signal sensitivity. For the construction of the sensing interface, a molecularly imprinted polymer was assembled on the photocathode to specifically recognize GAT. The proposed sensor exhibited a detection range of 10-1 to 105 pM with a detection limit of 0.065 pM. The proposed sensing method has the advantages of sensitivity, simplicity, reliable stability, and anti-interference ability, which opens the door to the design of high-performance self-powered PEC sensors.


Assuntos
Técnicas Biossensoriais , Cobalto , Óxidos , Peróxidos , Óxido de Zinco , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
19.
BMC Med ; 22(1): 206, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769523

RESUMO

BACKGROUND: Numerous studies have been conducted to investigate the relationship between ABO and Rhesus (Rh) blood groups and various health outcomes. However, a comprehensive evaluation of the robustness of these associations is still lacking. METHODS: We searched PubMed, Web of Science, Embase, Scopus, Cochrane, and several regional databases from their inception until Feb 16, 2024, with the aim of identifying systematic reviews with meta-analyses of observational studies exploring associations between ABO and Rh blood groups and diverse health outcomes. For each association, we calculated the summary effect sizes, corresponding 95% confidence intervals, 95% prediction interval, heterogeneity, small-study effect, and evaluation of excess significance bias. The evidence was evaluated on a grading scale that ranged from convincing (Class I) to weak (Class IV). We assessed the certainty of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation criteria (GRADE). We also evaluated the methodological quality of included studies using the A Measurement Tool to Assess Systematic Reviews (AMSTAR). AMSTAR contains 11 items, which were scored as high (8-11), moderate (4-7), and low (0-3) quality. We have gotten the registration for protocol on the PROSPERO database (CRD42023409547). RESULTS: The current umbrella review included 51 systematic reviews with meta-analysis articles with 270 associations. We re-calculated each association and found only one convincing evidence (Class I) for an association between blood group B and type 2 diabetes mellitus risk compared with the non-B blood group. It had a summary odds ratio of 1.28 (95% confidence interval: 1.17, 1.40), was supported by 6870 cases with small heterogeneity (I2 = 13%) and 95% prediction intervals excluding the null value, and without hints of small-study effects (P for Egger's test > 0.10, but the largest study effect was not more conservative than the summary effect size) or excess of significance (P < 0.10, but the value of observed less than expected). And the article was demonstrated with high methodological quality using AMSTAR (score = 9). According to AMSTAR, 18, 32, and 11 studies were categorized as high, moderate, and low quality, respectively. Nine statistically significant associations reached moderate quality based on GRADE. CONCLUSIONS: Our findings suggest a potential relationship between ABO and Rh blood groups and adverse health outcomes. Particularly the association between blood group B and type 2 diabetes mellitus risk.


Assuntos
Sistema ABO de Grupos Sanguíneos , Metanálise como Assunto , Estudos Observacionais como Assunto , Sistema do Grupo Sanguíneo Rh-Hr , Revisões Sistemáticas como Assunto , Humanos , Revisões Sistemáticas como Assunto/métodos , Estudos Observacionais como Assunto/métodos
20.
J Neuroinflammation ; 21(1): 15, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195497

RESUMO

BACKGROUND: Hepcidin is the master regulator of iron homeostasis. Hepcidin downregulation has been demonstrated in the brains of Alzheimer's disease (AD) patients. However, the mechanism underlying the role of hepcidin downregulation in cognitive impairment has not been elucidated. METHODS: In the present study, we generated GFAP-Cre-mediated hepcidin conditional knockout mice (HampGFAP cKO) to explore the effect of hepcidin deficiency on hippocampal structure and neurocognition. RESULTS: We found that the HampGFAP cKO mice developed AD-like brain atrophy and memory deficits. In particular, the weight of the hippocampus and the number of granule neurons in the dentate gyrus were significantly reduced. Further investigation demonstrated that the morphological change in the hippocampus of HampGFAP cKO mice was attributed to impaired neurogenesis caused by decreased proliferation of neural stem cells. Regarding the molecular mechanism, increased iron content after depletion of hepcidin followed by an elevated level of the inflammatory factor tumor necrosis factor-α accounted for the impairment of hippocampal neurogenesis in HampGFAP cKO mice. These observations were further verified in GFAP promoter-driven hepcidin knockdown mice and in Nestin-Cre-mediated hepcidin conditional knockout mice. CONCLUSIONS: The present findings demonstrated a critical role for hepcidin in hippocampal neurogenesis and validated the importance of iron and associated inflammatory cytokines as key modulators of neurodevelopment, providing insights into the potential pathogenesis of cognitive dysfunction and related treatments.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso Central , Animais , Humanos , Camundongos , Atrofia , Encéfalo , Hepcidinas/genética , Hipocampo , Ferro , Transtornos da Memória/genética , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA