Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(3): 636-50, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766809

RESUMO

CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.


Assuntos
Doenças do Sistema Nervoso Central/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Fosfotransferases/metabolismo , RNA de Transferência/metabolismo , Fatores de Transcrição/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Animais , Doenças do Sistema Nervoso Central/patologia , Cérebro/patologia , Pré-Escolar , Endorribonucleases/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos CBA , Microcefalia/genética , Doenças do Sistema Nervoso Periférico/patologia , RNA de Transferência/genética , Proteínas de Ligação a RNA
2.
Am J Hum Genet ; 109(9): 1605-1619, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007526

RESUMO

Newborn screening (NBS) dramatically improves outcomes in severe childhood disorders by treatment before symptom onset. In many genetic diseases, however, outcomes remain poor because NBS has lagged behind drug development. Rapid whole-genome sequencing (rWGS) is attractive for comprehensive NBS because it concomitantly examines almost all genetic diseases and is gaining acceptance for genetic disease diagnosis in ill newborns. We describe prototypic methods for scalable, parentally consented, feedback-informed NBS and diagnosis of genetic diseases by rWGS and virtual, acute management guidance (NBS-rWGS). Using established criteria and the Delphi method, we reviewed 457 genetic diseases for NBS-rWGS, retaining 388 (85%) with effective treatments. Simulated NBS-rWGS in 454,707 UK Biobank subjects with 29,865 pathogenic or likely pathogenic variants associated with 388 disorders had a true negative rate (specificity) of 99.7% following root cause analysis. In 2,208 critically ill children with suspected genetic disorders and 2,168 of their parents, simulated NBS-rWGS for 388 disorders identified 104 (87%) of 119 diagnoses previously made by rWGS and 15 findings not previously reported (NBS-rWGS negative predictive value 99.6%, true positive rate [sensitivity] 88.8%). Retrospective NBS-rWGS diagnosed 15 children with disorders that had been undetected by conventional NBS. In 43 of the 104 children, had NBS-rWGS-based interventions been started on day of life 5, the Delphi consensus was that symptoms could have been avoided completely in seven critically ill children, mostly in 21, and partially in 13. We invite groups worldwide to refine these NBS-rWGS conditions and join us to prospectively examine clinical utility and cost effectiveness.


Assuntos
Triagem Neonatal , Medicina de Precisão , Criança , Estado Terminal , Testes Genéticos/métodos , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Estudos Retrospectivos
3.
Brain ; 146(6): 2285-2297, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477332

RESUMO

The blood-brain barrier ensures CNS homeostasis and protection from injury. Claudin-5 (CLDN5), an important component of tight junctions, is critical for the integrity of the blood-brain barrier. We have identified de novo heterozygous missense variants in CLDN5 in 15 unrelated patients who presented with a shared constellation of features including developmental delay, seizures (primarily infantile onset focal epilepsy), microcephaly and a recognizable pattern of pontine atrophy and brain calcifications. All variants clustered in one subregion/domain of the CLDN5 gene and the recurrent variants demonstrate genotype-phenotype correlations. We modelled both patient variants and loss of function alleles in the zebrafish to show that the variants analogous to those in patients probably result in a novel aberrant function in CLDN5. In total, human patient and zebrafish data provide parallel evidence that pathogenic sequence variants in CLDN5 cause a novel neurodevelopmental disorder involving disruption of the blood-brain barrier and impaired neuronal function.


Assuntos
Microcefalia , Animais , Humanos , Microcefalia/genética , Claudina-5/genética , Claudina-5/metabolismo , Peixe-Zebra/metabolismo , Barreira Hematoencefálica/metabolismo , Convulsões/genética , Síndrome
4.
Brain ; 145(10): 3383-3390, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35737950

RESUMO

The endocannabinoid system is a highly conserved and ubiquitous signalling pathway with broad-ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNA sequencing showed clear expression of the truncated transcript and no differences were found between mutant and wild-type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique paediatric syndrome. Because enzymatic activity was preserved, the observed mislocalization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.


Assuntos
Endocanabinoides , Doenças do Sistema Nervoso , Humanos , Criança , Fenótipo , Doenças do Sistema Nervoso/genética , Heterozigoto , Síndrome , Proteínas Mutantes
5.
Hum Mol Genet ; 29(3): 459-470, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31943016

RESUMO

Autism spectrum disorders are associated with some degree of developmental regression in up to 30% of all cases. Rarely, however, is the regression so extreme that a developmentally advanced young child would lose almost all ability to communicate and interact with her surroundings. We applied trio whole exome sequencing to a young woman who experienced extreme developmental regression starting at 2.5 years of age and identified compound heterozygous nonsense mutations in TMPRSS9, which encodes for polyserase-1, a transmembrane serine protease of poorly understood physiological function. Using semiquantitative polymerase chain reaction, we showed that Tmprss9 is expressed in various mouse tissues, including the brain. To study the consequences of TMPRSS9 loss of function on the mammalian brain, we generated a knockout mouse model. Through a battery of behavioral assays, we found that Tmprss9-/- mice showed decreased social interest and social recognition. We observed a borderline recognition memory deficit by novel object recognition in aged Tmprss9-/- female mice, but not in aged Tmprss9-/- male mice or younger adult Tmprss9-/- mice in both sexes. This study provides evidence to suggest that loss of function variants in TMPRSS9 are related to an autism spectrum disorder. However, the identification of more individuals with similar phenotypes and TMPRSS9 loss of function variants is required to establish a robust gene-disease relationship.


Assuntos
Transtornos de Ansiedade/patologia , Transtorno do Espectro Autista/patologia , Códon sem Sentido , Sequenciamento do Exoma/métodos , Proteínas de Membrana/metabolismo , Transtornos da Memória/patologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/fisiologia , Adolescente , Adulto , Animais , Transtornos de Ansiedade/etiologia , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Transtornos da Memória/etiologia , Camundongos , Camundongos Knockout , Atividade Motora , Fenótipo , Serina Endopeptidases/genética
6.
Am J Hum Genet ; 105(4): 719-733, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564432

RESUMO

The second Newborn Sequencing in Genomic Medicine and Public Health study was a randomized, controlled trial of the effectiveness of rapid whole-genome or -exome sequencing (rWGS or rWES, respectively) in seriously ill infants with diseases of unknown etiology. Here we report comparisons of analytic and diagnostic performance. Of 1,248 ill inpatient infants, 578 (46%) had diseases of unknown etiology. 213 infants (37% of those eligible) were enrolled within 96 h of admission. 24 infants (11%) were very ill and received ultra-rapid whole-genome sequencing (urWGS). The remaining infants were randomized, 95 to rWES and 94 to rWGS. The analytic performance of rWGS was superior to rWES, including variants likely to affect protein function, and ClinVar pathogenic/likely pathogenic variants (p < 0.0001). The diagnostic performance of rWGS and rWES were similar (18 diagnoses in 94 infants [19%] versus 19 diagnoses in 95 infants [20%], respectively), as was time to result (median 11.0 versus 11.2 days, respectively). However, the proportion diagnosed by urWGS (11 of 24 [46%]) was higher than rWES/rWGS (p = 0.004) and time to result was less (median 4.6 days, p < 0.0001). The incremental diagnostic yield of reflexing to trio after negative proband analysis was 0.7% (1 of 147). In conclusion, rapid genomic sequencing can be performed as a first-tier diagnostic test in inpatient infants. urWGS had the shortest time to result, which was important in unstable infants, and those in whom a genetic diagnosis was likely to impact immediate management. Further comparison of urWGS and rWES is warranted because genomic technologies and knowledge of variant pathogenicity are evolving rapidly.


Assuntos
Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Testes Genéticos , Humanos , Lactente , Recém-Nascido
7.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916866

RESUMO

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Domínios Proteicos , Sequenciamento do Exoma
9.
J Med Genet ; 57(10): 664-670, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31937561

RESUMO

BACKGROUND: The shelterin complex is composed of six proteins that protect and regulate telomere length, including protection of telomeres 1 (POT1). Germline POT1 mutations are associated with an autosomal dominant familial cancer syndrome presenting with diverse malignancies, including glioma, angiosarcoma, colorectal cancer and melanoma. Although somatic POT1 mutations promote telomere elongation and genome instability in chronic lymphocytic leukaemia, the contribution of POT1 mutations to development of other sporadic cancers is largely unexplored. METHODS: We performed logistic regression, adjusted for tumour mutational burden, to identify associations between POT1 mutation frequency and tumour type in 62 368 tumours undergoing next-generation sequencing. RESULTS: A total of 1834 tumours harboured a non-benign mutation of POT1 (2.94%), of which 128 harboured a mutation previously reported to confer familial cancer risk in the setting of germline POT1 deficiency. Angiosarcoma was 11 times more likely than other tumours to harbour a POT1 mutation (p=1.4×10-20), and 65% of POT1-mutated angiosarcoma had >1 mutations in POT1. Malignant gliomas were 1.7 times less likely to harbour a POT1 mutation (p=1.2×10-3) than other tumour types. Colorectal cancer was 1.2 times less likely to harbour a POT1 mutation (p=0.012), while melanoma showed no differences in POT1 mutation frequency versus other tumours (p=0.67). CONCLUSIONS: These results confirm a role for shelterin dysfunction in angiosarcoma development but suggest that gliomas arising in the context of germline POT1 deficiency activate a telomere-lengthening mechanism that is uncommon in gliomagenesis.


Assuntos
Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Adulto , Idoso , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Mutação em Linhagem Germinativa/genética , Glioma/genética , Glioma/patologia , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , Pessoa de Meia-Idade , Síndromes Neoplásicas Hereditárias/patologia , Complexo Shelterina
10.
Hum Genet ; 139(5): 569-574, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32056000

RESUMO

Extremely rare diseases are increasingly recognized due to wide-spread, inexpensive genomic sequencing. Understanding the incidence of rare disease is important for appreciating its health impact and allocating recourses for research. However, estimating incidence of rare disease is challenging because the individual contributory alleles are, themselves, extremely rare. We propose a new method to determine incidence of rare, severe, recessive disease in non-consanguineous populations that use known allele frequencies, estimate the combined allele frequency of observed alleles and estimate the number of causative alleles that are thus far unobserved in a disease cohort. Experiments on simulated and real data show that this approach is a feasible method to estimate the incidence of rare disease in European populations but due to several limitations in our ability to assess the full spectrum of pathogenic mutations serves as a useful tool to provide a lower threshold on disease incidence.


Assuntos
Genes Recessivos , Predisposição Genética para Doença , Mutação , Polimorfismo de Nucleotídeo Único , Doenças Raras/epidemiologia , Doenças Raras/genética , Estudos de Coortes , Frequência do Gene , Humanos , Incidência , Modelos Genéticos , Estados Unidos/epidemiologia
11.
Am J Hum Genet ; 100(1): 117-127, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017373

RESUMO

From a GeneMatcher-enabled international collaboration, we identified ten individuals affected by intellectual disability, speech delay, ataxia, and facial dysmorphism and carrying a deleterious EBF3 variant detected by whole-exome sequencing. One 9-bp duplication and one splice-site, five missense, and two nonsense variants in EBF3 were found; the mutations occurred de novo in eight individuals, and the missense variant c.625C>T (p.Arg209Trp) was inherited by two affected siblings from their healthy mother, who is mosaic. EBF3 belongs to the early B cell factor family (also known as Olf, COE, or O/E) and is a transcription factor involved in neuronal differentiation and maturation. Structural assessment predicted that the five amino acid substitutions have damaging effects on DNA binding of EBF3. Transient expression of EBF3 mutant proteins in HEK293T cells revealed mislocalization of all but one mutant in the cytoplasm, as well as nuclear localization. By transactivation assays, all EBF3 mutants showed significantly reduced or no ability to activate transcription of the reporter gene CDKN1A, and in situ subcellular fractionation experiments demonstrated that EBF3 mutant proteins were less tightly associated with chromatin. Finally, in RNA-seq and ChIP-seq experiments, EBF3 acted as a transcriptional regulator, and mutant EBF3 had reduced genome-wide DNA binding and gene-regulatory activity. Our findings demonstrate that variants disrupting EBF3-mediated transcriptional regulation cause intellectual disability and developmental delay and are present in ∼0.1% of individuals with unexplained neurodevelopmental disorders.


Assuntos
Ataxia/genética , Face/anormalidades , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Cromatina/genética , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Deficiências do Desenvolvimento/genética , Exoma/genética , Feminino , Regulação da Expressão Gênica/genética , Genes Reporter , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Mosaicismo , Transporte Proteico/genética , Síndrome , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
13.
Genet Med ; 21(12): 2755-2764, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31263215

RESUMO

PURPOSE: Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants. METHODS: A large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized. Xenopus laevis (frog) was chosen as a model organism to assess Dyrk1a's role in renal development. RESULTS: Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in DYRK1A had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in Xenopus embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human DYRK1A RNA, but not with DYRK1AR205* or DYRK1AL245R RNA. CONCLUSION: Evidence supports routine GU screening of all individuals with de novo DYRK1A pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in Xenopus substantiate a novel role for DYRK1A in GU development.


Assuntos
Deficiência Intelectual/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Anormalidades Urogenitais/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Bases de Dados Genéticas , Modelos Animais de Doenças , Exoma/genética , Feminino , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/complicações , Rim/anormalidades , Rim/embriologia , Masculino , Néfrons/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Sistema Urinário/embriologia , Sistema Urinário/metabolismo , Sequenciamento do Exoma/métodos , Xenopus laevis/genética , Xenopus laevis/metabolismo , Adulto Jovem , Quinases Dyrk
14.
Circ Res ; 120(7): 1084-1090, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28223422

RESUMO

RATIONALE: Hypertrophic cardiomyopathy (HCM) is a prototypic single-gene disease caused mainly by mutations in genes encoding sarcomere proteins. Despite the remarkable advances, the causal genes in ≈40% of the HCM cases remain unknown, typically in small families and sporadic cases, wherein cosegregation could not be established. OBJECTIVE: To test the hypothesis that the missing causal genes in HCM is, in part, because of an oligogenic cause, wherein the pathogenic variants do not cosegregate with the phenotype. METHODS AND RESULTS: A clinically affected trio with HCM underwent clinical evaluation, electrocardiography, echocardiography, magnetic resonance imaging, and whole exome sequencing. Pathogenic variants in the whole exome sequencing data were identified using established algorithms. Family members were genotyped by Sanger sequencing and cosegregation was analyzed. The siblings had a severe course, whereas the mother had a mild course. Variant analysis showed that the trio shared 145 heterozygous pathogenic variants in 139 genes, including 2 in cardiomyopathy genes TTN and ALPK3. The siblings also had the pathogenic variant p.Ala13Thr variant in MYL2, a known gene for HCM. The sibling's father also carried the p.Ala13Thr variant, in whom an unambiguous diagnosis of HCM could not be made because of concomitant severe aortic stenosis. The TTN variant segregated with HCM, except in a 7-year-old boy, who had a normal phenotype. The ALPK3 variant, shared by the affected trio, did not segregate with the phenotype. CONCLUSIONS: We posit that a subset of HCM might be oligogenic caused by multiple pathogenic variants that do not perfectly cosegregate with the phenotype.


Assuntos
Miosinas Cardíacas/economia , Cardiomiopatia Hipertrófica/genética , Conectina/genética , Proteínas Musculares/genética , Cadeias Leves de Miosina/economia , Proteínas Quinases/genética , Adulto , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/diagnóstico , Criança , Exoma , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Proteínas Musculares/metabolismo , Mutação , Cadeias Leves de Miosina/genética , Linhagem , Fenótipo , Proteínas Quinases/metabolismo
15.
Pediatr Crit Care Med ; 20(11): 1007-1020, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246743

RESUMO

OBJECTIVES: Genetic disorders are a leading contributor to mortality in the neonatal ICU and PICU in the United States. Although individually rare, there are over 6,200 single-gene diseases, which may preclude a genetic diagnosis prior to ICU admission. Rapid whole genome sequencing is an emerging method of diagnosing genetic conditions in time to affect ICU management of neonates; however, its clinical utility has yet to be adequately demonstrated in critically ill children. This study evaluates next-generation sequencing in pediatric critical care. DESIGN: Retrospective cohort study. SETTING: Single-center PICU in a tertiary children's hospital. PATIENTS: Children 4 months to 18 years admitted to the PICU who were nominated between July 2016 and May 2018. INTERVENTIONS: Rapid whole genome sequencing with targeted phenotype-driven analysis was performed on patients and their parents, when parental samples were available. MEASUREMENTS AND MAIN RESULTS: A molecular diagnosis was made by rapid whole genome sequencing in 17 of 38 children (45%). In four of the 17 patients (24%), the genetic diagnoses led to a change in management while in the PICU, including genome-informed changes in pharmacotherapy and transition to palliative care. Nine of the 17 diagnosed children (53%) had no dysmorphic features or developmental delay. Eighty-two percent of diagnoses affected the clinical management of the patient and/or family after PICU discharge, including avoidance of biopsy, administration of factor replacement, and surveillance for disorder-related sequelae. CONCLUSIONS: This study demonstrates a retrospective evaluation for undiagnosed genetic disease in the PICU and clinical utility of rapid whole genome sequencing in a portion of critically ill children. Further studies are needed to identify PICU patients who will benefit from rapid whole genome sequencing early in PICU admission when the underlying etiology is unclear.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Sequenciamento Completo do Genoma , Adolescente , Criança , Pré-Escolar , Estado Terminal/terapia , Feminino , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Masculino , Medicina de Precisão/métodos , Estudos Retrospectivos
16.
BMC Med Genet ; 19(1): 197, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424743

RESUMO

BACKGROUND: TRRAP encodes a multidomain protein kinase that works as a genetic cofactor to influence DNA methylation patterns, DNA damage repair, and chromatin remodeling. TRRAP protein is vital to early neural developmental processes, and variants in this gene have been associated with schizophrenia and childhood disintegrative disorder. CASE PRESENTATION: Here, we report on a patient with a de novo nonsynonymous TRRAP single-nucleotide variant (EST00000355540.3:c.5957G > A, p.Arg1986Gln) and early onset major depression accompanied by a psychotic episode (before age 10) that occurred in the context of longer standing nonverbal learning disability and a past history of obsessions and compulsions. CONCLUSIONS: The de novo variant and presentation of very early onset psychosis indicate a rare Mendelian disorder inheritance model. The genotype and behavioral abnormalities of this patient are reviewed.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiências da Aprendizagem/genética , Proteínas Nucleares/genética , Transtorno Obsessivo-Compulsivo/genética , Mutação Puntual , Transtornos Psicóticos/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idade de Início , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Criança , Expressão Gênica , Genótipo , Humanos , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/fisiopatologia , Masculino , Análise da Randomização Mendeliana , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/fisiopatologia , Fenótipo , Conformação Proteica , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/fisiopatologia , Sequenciamento do Exoma
17.
Epilepsia ; 59(4): e56-e62, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29601086

RESUMO

We identified SCN1A variants in 2 infants who died of sudden infant death syndrome (SIDS) with hippocampal abnormalities from an exome sequencing study of 10 cases of SIDS but no history of seizures. One harbored SCN1A G682V, and the other had 2 SCN1A variants in cis: L1296M and E1308D, a variant previously associated with epilepsy. Functional evaluation in a heterologous expression system demonstrated partial loss of function for both G682V and the compound variant L1296M/E1308D. Our cases represent a novel association between SCN1A and SIDS, extending the SCN1A spectrum from epilepsy to SIDS. Our findings provide insights into SIDS and support genetic evaluation focused on epilepsy genes in SIDS.


Assuntos
Variação Genética/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Morte Súbita do Lactente/diagnóstico , Morte Súbita do Lactente/genética , Feminino , Humanos , Lactente
18.
Am J Hum Genet ; 94(5): 784-9, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24791903

RESUMO

Clinical whole-exome sequencing (WES) for identification of mutations leading to Mendelian disease has been offered to the medical community since 2011. Clinically undiagnosed neurological disorders are the most frequent basis for test referral, and currently, approximately 25% of such cases are diagnosed at the molecular level. To date, there are approximately 4,000 "known" disease-associated loci, and many are associated with striking dysmorphic features, making genotype-phenotype correlations relatively straightforward. A significant fraction of cases, however, lack characteristic dysmorphism or clinical pathognomonic traits and are dependent upon molecular tests for definitive diagnoses. Further, many molecular diagnoses are guided by recent gene-disease association discoveries. Hence, there is a critical interplay between clinical testing and research leading to gene-disease association discovery. Here, we describe four probands, all of whom presented with hypotonia, intellectual disability, global developmental delay, and mildly dysmorphic facial features. Three of the four also had sleep apnea. Each was a simplex case without a remarkable family history. Using WES, we identified AHDC1 de novo truncating mutations that most likely cause this genetic syndrome.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Hipotonia Muscular/genética , Síndromes da Apneia do Sono/genética , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Lactente , Masculino , Mutação , Síndrome
19.
Am J Hum Genet ; 95(5): 579-83, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25439098

RESUMO

5q31.3 microdeletion syndrome is characterized by neonatal hypotonia, encephalopathy with or without epilepsy, and severe developmental delay, and the minimal critical deletion interval harbors three genes. We describe 11 individuals with clinical features of 5q31.3 microdeletion syndrome and de novo mutations in PURA, encoding transcriptional activator protein Pur-α, within the critical region. These data implicate causative PURA mutations responsible for the severe neurological phenotypes observed in this syndrome.


Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Proteínas de Ligação a DNA/genética , Hipotonia Muscular/genética , Convulsões/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Humanos , Dados de Sequência Molecular , Mutação/genética , Análise de Sequência de DNA , Síndrome
20.
Genet Med ; 19(4): 412-420, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27657687

RESUMO

PURPOSE: To investigate the utility of whole-exome sequencing (WES) to define a molecular diagnosis for patients clinically diagnosed with congenital anomalies of kidney and urinary tract (CAKUT). METHODS: WES was performed in 62 families with CAKUT. WES data were analyzed for single-nucleotide variants (SNVs) in 35 known CAKUT genes, putatively deleterious sequence changes in new candidate genes, and potentially disease-associated copy-number variants (CNVs). RESULTS: In approximately 5% of families, pathogenic SNVs were identified in PAX2, HNF1B, and EYA1. Observed phenotypes in these families expand the current understanding about the role of these genes in CAKUT. Four pathogenic CNVs were also identified using two CNV detection tools. In addition, we found one deleterious de novo SNV in FOXP1 among the 62 families with CAKUT. The clinical database of the Baylor Miraca Genetics laboratory was queried and seven additional unrelated individuals with novel de novo SNVs in FOXP1 were identified. Six of these eight individuals with FOXP1 SNVs have syndromic urinary tract defects, implicating this gene in urinary tract development. CONCLUSION: We conclude that WES can be used to identify molecular etiology (SNVs, CNVs) in a subset of individuals with CAKUT. WES can also help identify novel CAKUT genes.Genet Med 19 4, 412-420.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma/métodos , Predisposição Genética para Doença/genética , Anormalidades Urogenitais/diagnóstico , Refluxo Vesicoureteral/diagnóstico , Adolescente , Criança , Pré-Escolar , Feminino , Fatores de Transcrição Forkhead/genética , Fator 1-beta Nuclear de Hepatócito/genética , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas Nucleares/genética , Fator de Transcrição PAX2/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Proteínas Tirosina Fosfatases/genética , Proteínas Repressoras/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA