Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Annu Rev Biochem ; 82: 119-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451868

RESUMO

First discovered as a structure-specific endonuclease that evolved to cut at the base of single-stranded flaps, flap endonuclease (FEN1) is now recognized as a central component of cellular DNA metabolism. Substrate specificity allows FEN1 to process intermediates of Okazaki fragment maturation, long-patch base excision repair, telomere maintenance, and stalled replication fork rescue. For Okazaki fragments, the RNA primer is displaced into a 5' flap and then cleaved off. FEN1 binds to the flap base and then threads the 5' end of the flap through its helical arch and active site to create a configuration for cleavage. The threading requirement prevents this active nuclease from cutting the single-stranded template between Okazaki fragments. FEN1 efficiency and specificity are critical to the maintenance of genome fidelity. Overall, recent advances in our knowledge of FEN1 suggest that it was an ancient protein that has been fine-tuned over eons to coordinate many essential DNA transactions.


Assuntos
Reparo do DNA/genética , Replicação do DNA/genética , DNA/metabolismo , Endonucleases Flap/química , Animais , DNA/química , DNA/genética , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Humanos , Especificidade por Substrato
2.
Nucleic Acids Res ; 51(22): 12185-12206, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37930834

RESUMO

The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2-Msh3 binding to 5' ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2-Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2-Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2-Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2-Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2-Msh3 can disrupt DNA replication and repair and highlights the role of Msh2-Msh3 protein abundance in Msh2-Msh3-mediated genomic instability.


Assuntos
Instabilidade Genômica , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/genética , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 295(46): 15482-15497, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32878983

RESUMO

In Saccharomyces cerevisiae, the Pif1 helicase functions in both nuclear and mitochondrial DNA replication and repair processes, preferentially unwinding RNA:DNA hybrids and resolving G-quadruplex structures. We sought to determine how the various activities of Pif1 are regulated in vivo Here, we report lysine acetylation of nuclear Pif1 and demonstrate that it influences both Pif1's cellular roles and core biochemical activities. Using Pif1 overexpression toxicity assays, we determined that the acetyltransferase NuA4 and deacetylase Rpd3 are primarily responsible for the dynamic acetylation of nuclear Pif1. MS analysis revealed that Pif1 was modified in several domains throughout the protein's sequence on the N terminus (Lys-118 and Lys-129), helicase domain (Lys-525, Lys-639, and Lys-725), and C terminus (Lys-800). Acetylation of Pif1 exacerbated its overexpression toxicity phenotype, which was alleviated upon deletion of its N terminus. Biochemical assays demonstrated that acetylation of Pif1 stimulated its helicase, ATPase, and DNA-binding activities, whereas maintaining its substrate preferences. Limited proteolysis assays indicate that acetylation of Pif1 induces a conformational change that may account for its altered enzymatic properties. We propose that acetylation is involved in regulating of Pif1 activities, influencing a multitude of DNA transactions vital to the maintenance of genome integrity.


Assuntos
Núcleo Celular/metabolismo , DNA Helicases/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , DNA Helicases/química , DNA Helicases/genética , DNA Fúngico/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Mutagênese Sítio-Dirigida , Domínios Proteicos , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Espectrometria de Massas em Tandem
4.
J Biol Chem ; 295(40): 13902-13913, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32763971

RESUMO

Trinucleotide repeat (TNR) expansion and deletion are responsible for over 40 neurodegenerative diseases and associated with cancer. TNRs can undergo somatic instability that is mediated by DNA damage and repair and gene transcription. Recent studies have pointed toward a role for R-loops in causing TNR expansion and deletion, and it has been shown that base excision repair (BER) can result in CAG repeat deletion from R-loops in yeast. However, it remains unknown how BER in R-loops can mediate TNR instability. In this study, using biochemical approaches, we examined BER enzymatic activities and their influence on TNR R-loops. We found that AP endonuclease 1 incised an abasic site on the nontemplate strand of a TNR R-loop, creating a double-flap intermediate containing an RNA:DNA hybrid that subsequently inhibited polymerase ß (pol ß) synthesis of TNRs. This stimulated flap endonuclease 1 (FEN1) cleavage of TNRs engaged in an R-loop. Moreover, we showed that FEN1 also efficiently cleaved the RNA strand, facilitating pol ß loop/hairpin bypass synthesis and the resolution of TNR R-loops through BER. Consequently, this resulted in fewer TNRs synthesized by pol ß than those removed by FEN1, thereby leading to repeat deletion. Our results indicate that TNR R-loops preferentially lead to repeat deletion during BER by disrupting the balance between the addition and removal of TNRs. Our discoveries open a new avenue for the treatment and prevention of repeat expansion diseases and cancer.


Assuntos
DNA Polimerase beta/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Endonucleases Flap/química , Estruturas R-Loop , Repetições de Trinucleotídeos , Humanos
5.
Curr Genet ; 67(1): 85-92, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33079209

RESUMO

PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.


Assuntos
DNA Helicases/genética , Instabilidade Genômica/genética , Histona Acetiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Acetilação , Reparo do DNA/genética , Replicação do DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Histona Desacetilases/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Saccharomyces cerevisiae/genética , Telômero/genética , Homeostase do Telômero/genética
6.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518654

RESUMO

Simian virus 40 (SV40) exists as chromatin throughout its life cycle and undergoes typical epigenetic regulation mediated by changes in nucleosome location and associated histone modifications. In order to investigate the role of epigenetic regulation during the encapsidation of late-stage minichromosomes into virions, we mapped the locations of nucleosomes containing acetylated or methylated lysines in the histone tails of H3 and H4 present in the chromatin from 48-h-postinfection minichromosomes and disrupted virions. In minichromosomes obtained late in infection, nucleosomes were found carrying various histone modifications primarily in the regulatory region, with a major nucleosome located within the enhancer and other nucleosomes at the early and late transcriptional start sites. The nucleosome found in the enhancer would be expected to repress early transcription by blocking access to part of the SP1 binding sites and the left side of the enhancer in late-stage minichromosomes while also allowing late transcription. In chromatin from virions, the principal nucleosome located in the enhancer was shifted ∼70 bases in the late direction from what was found in minichromosomes, and the level of modified histones was increased throughout the genome. The shifting of the enhancer-associated nucleosome to the late side would effectively serve as a switch to relieve the repression of early transcription found in late minichromosomes while likely also repressing late transcription by blocking access to necessary regulatory sequences. This epigenetic switch appeared to occur during the final stage of virion formation.IMPORTANCE For a virus to complete infection, it must produce a new virus particle in which the genome is able to support a new infection. This is particularly important for viruses like simian virus 40 (SV40), which exist as chromatin throughout their life cycles, since chromatin structure plays a major role in the regulation of the life cycle. In order to determine the role of SV40 chromatin structure late in infection, we mapped the locations of nucleosomes and their histone tail modifications in SV40 minichromosomes and in the SV40 chromatin found in virions using chromatin immunoprecipitation-DNA sequencing (ChIP-Seq). We have identified a novel viral transcriptional control mechanism in which a nucleosome found in the regulatory region of the SV40 minichromosome is directed to slide during the formation of the virus particle, exposing transcription factor binding sites required for early transcription that were previously blocked by the presence of the nucleosome.


Assuntos
Nucleossomos/genética , Vírus 40 dos Símios/genética , Transcrição Gênica/genética , Acetilação , Animais , Sequência de Bases/genética , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Cromatina/metabolismo , Cromatina/virologia , Montagem e Desmontagem da Cromatina , DNA Viral/genética , Epigênese Genética/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Vírus 40 dos Símios/metabolismo , Vírion/genética , Replicação Viral/genética
7.
Biochemistry ; 56(4): 647-656, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28098985

RESUMO

The process of base excision repair (BER) recognizes and repairs small lesions or inappropriate bases on DNA through either a short-patch or long-patch pathway. The enzymes involved in BER have been well-characterized on DNA substrates, and, somewhat surprisingly, many of these enzymes, including several DNA glycosylases, AP endonuclease (APE), FEN1 endonuclease, and DNA ligases, have been shown to have activity on DNA substrates within nucleosomes. DNA polymerase ß (Pol ß), however, exhibits drastically reduced or no activity on nucleosomal DNA. Interestingly, acetylation of Pol ß, by the acetyltransferase p300, inhibits its 5' dRP-lyase activity and presumably pushes repair of DNA substrates through the long-patch base excision repair (LP-BER) pathway. In addition to the major enzymes involved in BER, a chromatin architectural factor, HMGB1, was found to directly interact with and enhance the activity of APE1 and FEN1, and thus may aid in altering the structure of the nucleosome to be more accessible to BER factors. In this work, we investigated whether acetylation of Pol ß, either alone or in conjunction with HMGB1, facilitates its activity on nucleosome substrates. We find acetylated Pol ß exhibits enhanced strand displacement synthesis activity on DNA substrates, but, similar to the unmodified enzyme, has little or no activity on nucleosomes. Preincubation of DNA templates with HMGB1 has little or no stimulatory effect on Pol ß and even is inhibitory at higher concentrations. In contrast, preincubation of nucleosomes with HMGB1 rescues Pol ß gap-filling activity in nucleosomes, suggesting that this factor may help overcome the repressive effects of chromatin.


Assuntos
DNA Polimerase beta/química , Reparo do DNA , DNA/química , Proteína HMGB1/química , Nucleossomos/metabolismo , Acetilação , Animais , Galinhas , DNA/genética , DNA/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Expressão Gênica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleossomos/ultraestrutura , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Xenopus , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
8.
Nucleic Acids Res ; 42(16): 10516-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25122752

RESUMO

Single-stranded DNA (ssDNA) at DNA ends is an important regulator of the DNA damage response. Resection, the generation of ssDNA, affects DNA damage checkpoint activation, DNA repair pathway choice, ssDNA-associated mutation and replication fork stability. In eukaryotes, extensive DNA resection requires the nuclease Exo1 and nuclease/helicase pair: Dna2 and Sgs1(BLM). How Exo1 and Dna2-Sgs1(BLM) coordinate during resection remains poorly understood. The DNA damage checkpoint clamp (the 9-1-1 complex) has been reported to play an important role in stimulating resection but the exact mechanism remains unclear. Here we show that the human 9-1-1 complex enhances the cleavage of DNA by both DNA2 and EXO1 in vitro, showing that the resection-stimulatory role of the 9-1-1 complex is direct. We also show that in Saccharomyces cerevisiae, the 9-1-1 complex promotes both Dna2-Sgs1 and Exo1-dependent resection in response to uncapped telomeres. Our results suggest that the 9-1-1 complex facilitates resection by recruiting both Dna2-Sgs1 and Exo1 to sites of resection. This activity of the 9-1-1 complex in supporting resection is strongly inhibited by the checkpoint adaptor Rad9(53BP1). Our results provide important mechanistic insights into how DNA resection is regulated by checkpoint proteins and have implications for genome stability in eukaryotes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Helicases/genética , Exodesoxirribonucleases/genética , Deleção de Genes , Humanos , RecQ Helicases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/metabolismo
9.
Antimicrob Agents Chemother ; 58(12): 7171-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224011

RESUMO

Adenovirus infections of immunocompromised patients can develop into deadly multiorgan or systemic disease. The virus is especially threatening for pediatric allogeneic hematopoietic stem cell transplant recipients; according to some studies, 10% or more of these patients succumb to disease resulting from adenovirus infection. At present, there is no drug approved for the treatment or prevention of adenovirus infections. Compounds that are approved to treat other virus infections are used off-label to combat adenovirus, but only anecdotal evidence of the efficacy of these drugs exists. Ganciclovir, a drug approved for the treatment of herpesvirus infection, was previously reported to be effective against human adenoviruses in vitro. To model adenovirus infections in immunocompromised humans, we examined ganciclovir's efficacy in immunosuppressed Syrian hamsters intravenously infected with type 5 human adenovirus (Ad5). This animal model is permissive for Ad5 replication, and the animals develop symptoms similar to those seen in humans. We demonstrate that ganciclovir suppresses Ad5 replication in the liver of infected hamsters and that it mitigates the consequences of Ad5 infections in these animals when administered prophylactically or therapeutically. We show that ganciclovir inhibits Ad5 DNA synthesis and late gene expression. The mechanism of action for the drug is not clear; preliminary data suggest that it exerts its antiadenoviral effect by directly inhibiting the adenoviral DNA polymerase. While more extensive studies are required, we believe that ganciclovir is a promising drug candidate to treat adenovirus infections. Brincidofovir, a drug with proven activity against Ad5, was used as a positive control in the prophylactic experiment.


Assuntos
Infecções por Adenoviridae/tratamento farmacológico , Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Ganciclovir/farmacologia , Hospedeiro Imunocomprometido , Proteínas Virais/antagonistas & inibidores , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/mortalidade , Infecções por Adenoviridae/virologia , Adenovírus Humanos/genética , Adenovírus Humanos/crescimento & desenvolvimento , Adenovírus Humanos/patogenicidade , Animais , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Citosina/análogos & derivados , Citosina/farmacologia , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Mesocricetus , Organofosfonatos/farmacologia , Análise de Sobrevida , Transaminases/sangue , Carga Viral/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Nucleic Acids Res ; 40(14): 6774-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22570407

RESUMO

In eukaryotic Okazaki fragment processing, the RNA primer is displaced into a single-stranded flap prior to removal. Evidence suggests that some flaps become long before they are cleaved, and that this cleavage involves the sequential action of two nucleases. Strand displacement characteristics of the polymerase show that a short gap precedes the flap during synthesis. Using biochemical techniques, binding and cleavage assays presented here indicate that when the flap is ∼ 30 nt long the nuclease Dna2 can bind with high affinity to the flap and downstream double strand and begin cleavage. When the polymerase idles or dissociates the Dna2 can reorient for additional contacts with the upstream primer region, allowing the nuclease to remain stably bound as the flap is further shortened. The DNA can then equilibrate to a double flap that can bind Dna2 and flap endonuclease (FEN1) simultaneously. When Dna2 shortens the flap even more, FEN1 can displace the Dna2 and cleave at the flap base to make a nick for ligation.


Assuntos
DNA Helicases/metabolismo , DNA/metabolismo , Endonucleases Flap/metabolismo , DNA/química , Clivagem do DNA , Humanos , Ligação Proteica , Especificidade por Substrato
11.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738876

RESUMO

Functional characterization of proteins requires them to be expressed and purified in substantial amounts with high purity to perform biochemical assays. The Fast Protein Liquid Chromatography (FPLC) system allows high-resolution separation of complex protein mixtures. By adjusting various parameters in FPLC, such as selecting the appropriate purification matrix, regulating the protein sample's temperature, and managing the sample's flow rate onto the matrix and the elution rate, it is possible to ensure the protein's stability and functionality. In this protocol, we will demonstrate the versatility of the FPLC system to purify 6X-His-tagged flap endonuclease 1 (FEN1) protein, produced in bacterial cultures. To improve protein purification efficiency, we will focus on multiple considerations, including proper column packing and preparation, sample injection using a sample loop, flow rate of sample application to the column, and sample elution parameters. Finally, the chromatogram will be analyzed to identify fractions containing high yields of protein and considerations for proper recombinant protein long-term storage. Optimizing protein purification methods is crucial for improving the precision and reliability of protein analysis.


Assuntos
Cromatografia de Afinidade , Cromatografia de Afinidade/métodos , Endonucleases Flap/química , Endonucleases Flap/isolamento & purificação , Endonucleases Flap/metabolismo , Cromatografia Líquida/métodos , Histidina/química , Escherichia coli/genética , Escherichia coli/química , Escherichia coli/metabolismo , Oligopeptídeos/química , Oligopeptídeos/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
J Mol Biol ; 436(16): 168672, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908783

RESUMO

CTC1-STN1-TEN1 (CST) is a single-stranded DNA binding protein vital for telomere length maintenance with additional genome-wide roles in DNA replication and repair. While CST was previously shown to function in double-strand break repair and promote replication restart, it is currently unclear whether it has specialized roles in other DNA repair pathways. Proper and efficient repair of DNA is critical to protecting genome integrity. Telomeres and other G-rich regions are strongly predisposed to oxidative DNA damage in the form of 8-oxoguanines, which are typically repaired by the base-excision repair (BER) pathway. Moreover, recent studies suggest that CST functions in the repair of oxidative DNA lesions. Therefore, we tested whether CST interacts with and regulates BER protein activity. Here, we show that CST robustly stimulates proteins involved in BER, including OGG1, Pol ß, APE1, and LIGI, on both telomeric and non-telomeric DNA substrates. Biochemical reconstitution of the pathway indicates that CST stimulates BER. Finally, knockout of STN1 or CTC1 leads to increased levels of 8-oxoguanine, suggesting defective BER in the absence of CST. Combined, our results define an undiscovered function of CST in BER, where it acts as a stimulatory factor to promote efficient genome-wide oxidative repair.

13.
Crit Rev Biochem Mol Biol ; 45(5): 440-52, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20735237

RESUMO

The molecular biology of histone H4 lysine 20 (H4K20) methylation, like many other post-translational modifications of histones, has been the subject of intensive interest in recent years. While there is an emerging consensus linking H4K20me1, H4K20me2, and H4K20me3 to transcription, repair, and constitutive heterochromatin, respectively, the specific details of these associations and the biological mechanisms by which the methylated histones are introduced and function are now the subject of active investigation. Although a large number of methylases capable of methylating H4K20 have been identified and characterized; there is no known demethylase of H4K20, though the search is ongoing. Additionally, many recent studies have been directed at understanding the role of methylated H4K20 and other histone modifications associated with different biological processes in the context of a combinatorial histone code. It seems likely that continued study of the methylation of H4K20 will yield extremely valuable insights concerning the regulation of histone modifications before and during cell division and the impact of these modifications on subsequent gene expression.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Animais , Replicação do DNA , Código das Histonas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Metilação , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Transcrição Gênica
14.
Genes (Basel) ; 14(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37107532

RESUMO

DNA polymerase delta is the primary polymerase that is involved in undamaged nuclear lagging strand DNA replication. Our mass-spectroscopic analysis has revealed that the human DNA polymerase δ is acetylated on subunits p125, p68, and p12. Using substrates that simulate Okazaki fragment intermediates, we studied alterations in the catalytic properties of acetylated polymerase and compared it to the unmodified form. The current data show that the acetylated form of human pol δ displays a higher polymerization activity compared to the unmodified form of the enzyme. Additionally, acetylation enhances the ability of the polymerase to resolve complex structures such as G-quadruplexes and other secondary structures that might be present on the template strand. More importantly, the ability of pol δ to displace a downstream DNA fragment is enhanced upon acetylation. Our current results suggest that acetylation has a profound effect on the activity of pol δ and supports the hypothesis that acetylation may promote higher-fidelity DNA replication.


Assuntos
DNA Polimerase III , Lisina , Humanos , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Lisina/genética , Acetilação , Replicação do DNA , DNA/genética , DNA/metabolismo
15.
J Biol Chem ; 286(9): 6865-70, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21177245

RESUMO

In eukaryotic nuclear DNA replication, one strand of DNA is synthesized continuously, but the other is made as Okazaki fragments that are later joined. Discontinuous synthesis is inherently more complex, and fragmented intermediates create risks for disruptions of genome integrity. Genetic analyses and biochemical reconstitutions indicate that several parallel pathways evolved to ensure that the fragments are made and joined with integrity. An RNA primer is removed from each fragment before joining by a process involving polymerase-dependent displacement into a single-stranded flap. Evidence in vitro suggests that, with most fragments, short flaps are displaced and efficiently cleaved. Some flaps can become long, but these are also removed to allow joining. Rarely, a flap can form structure, necessitating displacement of the entire fragment. There is now evidence that post-translational protein modification regulates the flow through the pathways to favor protection of genomic information in regions of actively transcribed chromatin.


Assuntos
Replicação do DNA/fisiologia , DNA/fisiologia , Células Eucarióticas/fisiologia , Genômica , DNA Polimerase Dirigida por DNA/fisiologia , Fase S/fisiologia
16.
J Biol Chem ; 286(27): 23763-70, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21572043

RESUMO

Two processes, DNA replication and DNA damage repair, are key to maintaining genomic fidelity. The Dna2 enzyme lies at the heart of both of these processes, acting in conjunction with flap endonuclease 1 and replication protein A in DNA lagging strand replication and with BLM/Sgs1 and MRN/X in double strand break repair. In vitro, Dna2 helicase and flap endo/exonuclease activities require an unblocked 5' single-stranded DNA end to unwind or cleave DNA. In this study we characterize a Dna2 nuclease activity that does not require, and in fact can create, 5' single-stranded DNA ends. Both endonuclease and flap endo/exonuclease are abolished by the Dna2-K677R mutation, implicating the same active site in catalysis. In addition, we define a novel ATP-dependent flap endo/exonuclease activity, which is observed only in the presence of Mn(2+). The endonuclease is blocked by ATP and is thus experimentally distinguishable from the flap endo/exonuclease function. Thus, Dna2 activities resemble those of RecB and AddAB nucleases even more closely than previously appreciated. This work has important implications for understanding the mechanism of action of Dna2 in multiprotein complexes, where dissection of enzymatic activities and cofactor requirements of individual components contributing to orderly and precise execution of multistep replication/repair processes depends on detailed characterization of each individual activity.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , DNA Helicases/química , DNA de Cadeia Simples/química , Exodesoxirribonucleases/química , Endonucleases Flap/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Humanos , Manganês/química , Manganês/metabolismo , Mutação de Sentido Incorreto
17.
Genes (Basel) ; 14(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36672839

RESUMO

Flap endonuclease 1 (FEN1) is an essential enzyme that removes RNA primers and base lesions during DNA lagging strand maturation and long-patch base excision repair (BER). It plays a crucial role in maintaining genome stability and integrity. FEN1 is also implicated in RNA processing and biogenesis. A recent study from our group has shown that FEN1 is involved in trinucleotide repeat deletion by processing the RNA strand in R-loops through BER, further suggesting that the enzyme can modulate genome stability by facilitating the resolution of R-loops. However, it remains unknown how FEN1 can process RNA to resolve an R-loop. In this study, we examined the FEN1 cleavage activity on the RNA:DNA hybrid intermediates generated during DNA lagging strand processing and BER in R-loops. We found that both human and yeast FEN1 efficiently cleaved an RNA flap in the intermediates using its endonuclease activity. We further demonstrated that FEN1 was recruited to R-loops in normal human fibroblasts and senataxin-deficient (AOA2) fibroblasts, and its R-loop recruitment was significantly increased by oxidative DNA damage. We showed that FEN1 specifically employed its endonucleolytic cleavage activity to remove the RNA strand in an R-loop during BER. We found that FEN1 coordinated its DNA and RNA endonucleolytic cleavage activity with the 3'-5' exonuclease of APE1 to resolve the R-loop. Our results further suggest that FEN1 employed its unique tracking mechanism to endonucleolytically cleave the RNA strand in an R-loop by coordinating with other BER enzymes and cofactors during BER. Our study provides the first evidence that FEN1 endonucleolytic cleavage can result in the resolution of R-loops via the BER pathway, thereby maintaining genome integrity.


Assuntos
Endonucleases Flap , Estruturas R-Loop , Humanos , DNA/genética , DNA/metabolismo , Reparo do DNA/genética , Exonucleases/genética , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Instabilidade Genômica , RNA/genética
18.
J Biol Chem ; 285(45): 34922-31, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20739288

RESUMO

FEN1 cleaves 5' flaps at their base to create a nicked product for ligation. FEN1 has been reported to enter the flap from the 5'-end and track to the base. Current binding analyses support a very different mechanism of interaction with the flap substrate. Measurements of FEN1 binding to a flap substrate show that the nuclease binds with similar high affinity to the base of a long flap even when the 5'-end is blocked with biotin/streptavidin. However, FEN1 bound to a blocked flap is more sensitive to sequestration by a competing substrate. These results are consistent with a substrate interaction mechanism in which FEN1 first binds the flap base and then threads the flap through an opening in the protein from the 5'-end to the base for cleavage. Significantly, when the unblocked flap length is reduced from five to two nucleotides, FEN1 can be sequestered from the substrate to a similar extent as a blocked, long flap substrate. Apparently, interactions related to threading occur only when the flap is greater than two to four nucleotides long, implying that short flaps are cleaved without a threading requirement.


Assuntos
DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Endonucleases Flap/química , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Ligação Proteica
19.
J Biol Chem ; 285(37): 28496-505, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20628185

RESUMO

Reconstitution of eukaryotic Okazaki fragment processing implicates both one- and two-nuclease pathways for processing flap intermediates. In most cases, FEN1 (flap endonuclease 1) is able to efficiently cleave short flaps as they form. However, flaps escaping cleavage bind replication protein A (RPA) inhibiting FEN1. The flaps must then be cleaved by Dna2 nuclease/helicase before FEN1 can act. Pif1 helicase aids creation of long flaps. The pathways were considered connected only in that the products of Dna2 cleavage are substrates for FEN1. However, results presented here show that Dna2, Pif1, and RPA, the unique proteins of the two-nuclease pathway from Saccharomyces cerevisiae, all stimulate FEN1 acting in the one-nuclease pathway. Stimulation is observed on RNA flaps representing the initial displacement and on short DNA flaps, subsequently displaced. Neither the RNA nor the short DNA flaps can bind the two-nuclease pathway proteins. Instead, direct interactions between FEN1 and the two-nuclease pathway proteins have been detected. These results suggest that the proteins are either part of a complex or interact successively with FEN1 because the level of stimulation would be similar either way. Proteins bound to FEN1 could be tethered to the flap base by the interaction of FEN1 with PCNA, potentially improving their availability when flaps become long. These findings also support a model in which cleavage by FEN1 alone is the preferred pathway, with the first opportunity to complete cleavage, and is stimulated by components of the backup pathway.


Assuntos
Acetiltransferases/metabolismo , Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , DNA/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/genética , DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/genética , Proteínas de Membrana/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
J Biol Chem ; 285(50): 38861-8, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20929864

RESUMO

Dna2 endonuclease/helicase participates in eukaryotic DNA transactions including cleavage of long flaps generated during Okazaki fragment processing. Its unusual substrate interaction consists of recognition and binding of the flap base, then threading over the 5'-end of the flap, and cleaving periodically to produce a terminal product ∼5 nt in length. Blocking the 5'-end prevents cleavage. The Dna2 ATP-driven 5' to 3' DNA helicase function promotes motion of Dna2 on the flap, presumably aiding its nuclease function. Here we demonstrate using two different nuclease-dead Dna2 mutants that on substrates simulating Okazaki fragments, Dna2 must thread onto an unblocked 5' flap to display helicase activity. This requirement is maintained on substrates with single-stranded regions thousands of nucleotides in length. To our knowledge this is the first description of a eukaryotic helicase that cannot load onto its tracking strand internally but instead must enter from the end. Biologically, the loading requirement likely helps the helicase to coordinate with the Dna2 nuclease function to prevent creation of undesirably long flaps during DNA transactions.


Assuntos
DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Animais , DNA/metabolismo , DNA Helicases/genética , Reparo do DNA , Desoxirribonucleases/metabolismo , Escherichia coli/metabolismo , Vetores Genéticos , Humanos , Modelos Genéticos , Mutação , Oligonucleotídeos/química , Saccharomyces cerevisiae/metabolismo , Estreptavidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA