Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 11(3): e1246-e1256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39359585

RESUMO

Alternative approaches to laser fusion for the additive manufacturing (AM) of metals are often hampered by the need for long sintering cycles. Typical sintering cycles require heating at temperatures above 80% of the melting point for several hours. The process is time- and energy-consuming, particularly when high-melting materials are involved. Applying pressure can drastically reduce the time and temperature required for densification. Recently, a particular kind of pressure-assisted sintering process known as spark plasma sintering (SPS) or field-assisted sintering (FAST) received considerable attention in academia and industry due to its ability to enhance densification. However, conventional SPS/FAST techniques cannot be directly applied to the densification of objects presenting a complex geometry. This work shows how a modified SPS/FAST setup, operating in a pseudoisostatic mode, can be used for debinding and sinter objects produced by material extrusion. This approach can be applied to metals and metal-based and ceramic-based composites when their geometry does not include closed cavities. Depending on the characteristics of the pressure-transfer medium, some level of anisotropy in the volume reduction associated with the densification can be observed. Still, it can easily be corrected by appropriately compensating sintering deformation during printing. Using this approach, the time required for the debinding and sintering can be reduced considerably. It represents an alternative approach to the AM of a wide range of inorganic materials characterized by a relatively low-cost, high material flexibility, and low environmental impact.

2.
3D Print Addit Manuf ; 10(3): 559-568, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37346181

RESUMO

Copper was manufactured by using a low-cost 3D printing device and copper oxide water-based colloids. The proposed method avoids the use of toxic volatile solvents (used in metal-based robocasting), adopting copper oxide as a precursor of copper metal due to its lower cost and higher chemical stability. The appropriate rheological properties of the colloids have been obtained through the addition of poly-ethylene oxide-co-polypropylene-co-polyethylene oxide copolymer (Pluronic P123) and poly-acrylic acid to the suspension of the oxide in water. Mixing of the components of the colloidal suspension was performed with the same syringes used for the extrusion, avoiding any material waste. The low-temperature transition of water solutions of P123 is used to facilitate the homogenization of the colloid. The copper oxide is then converted to copper metal through a reductive sintering process, performed at 1000°C for a few hours in an atmosphere of Ar-10%H2. This approach allows the obtainment of porous copper objects (up to 20%) while retaining good mechanical properties. It could be beneficial for many applications, for example current collectors in lithium batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA