RESUMO
BACKGROUND: Espins are actin bundling proteins present in hair cell stereocilia. A recessive mutation in the espin gene (Espn) has been detected in the jerker mouse and causes deafness, vestibular dysfunction, and hair cell degeneration. More recently mutations in the human espin gene (ESPN) have been described in two families affected by autosomal recessive hearing loss and vestibular areflexia. OBJECTIVE: To report the identification of four additional ESPN mutations (S719R, D744N, R774Q, and delK848) in patients affected by autosomal dominant hearing loss without vestibular involvement. RESULTS: To determine whether the mutated ESPN alleles affected the biological activity of the corresponding espin proteins in vivo, their ability to target and elongate the parallel actin bundles of brush border microvilli was investigated in transfected LLC-PK1-CL4 epithelial cells. For three mutated alleles clear abnormalities in microvillar length or distribution were obtained. CONCLUSIONS: The results further strengthen the causative role of the espin gene in non-syndromic hearing loss and add new insights into espin structure and function.
Assuntos
Genes Dominantes/genética , Perda Auditiva/genética , Proteínas dos Microfilamentos/genética , Microvilosidades/genética , Microvilosidades/patologia , Mutação/genética , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Polimorfismo Genético , Alinhamento de Sequência , SuínosRESUMO
This study was designed to determine whether Coxsackie adenovirus receptor (CAR) and alpha nu beta3/alpha nu beta5 integrin co-receptors are involved in adenovirus gene transfer in the rat cochlea. We find that CAR and integrin co-receptors are expressed in every cell subtype transduced by the adenoviral vector Ad5 DeltaE1-E3/cytomegalovirus/green fluorescent protein (GFP) on cochlear slices in vitro. The spiral ganglion neurons, which do not express CAR, were not transduced by the virus. Blocking these receptors by monoclonal antibodies decreased transgene expression, whereas disrupting tight junctions with ethylenediaminetetraacetic acid led to an increased transgene expression. However, sensory hair cells and strial cells also expressing CAR and alpha nu integrins were not transduced by the vector. GFP expression was also studied in vivo. Perilymphatic perfusion of adenovirus in vivo did not affect hearing and only cells lining the perilymphatic spaces were transduced. Endolymphatic perfusion resulted in low-frequency hearing loss and although some cells of the organ of Corti were efficiently transduced, the sensory and the strial cells were not. Transduced sensory and strial cells were occasionally observed in cochleas after single shot of adenovirus. Pretreatment with anti-CAR and anti-alpha nu antibodies decreases GFP expression in vivo, suggesting that the CAR/alpha nu integrin pathway is involved in adenovirus transduction in the cochlea.