Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Curr Neurol Neurosci Rep ; 23(12): 907-923, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060134

RESUMO

PURPOSE OF REVIEW: Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools. RECENT FINDINGS: Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy. Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.


Assuntos
Cataplexia , Narcolepsia , Transtorno do Comportamento do Sono REM , Humanos , Sono REM/fisiologia , Encéfalo
2.
Exp Neurol ; : 115035, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39481513

RESUMO

The lateral hypothalamic region (LH) has been identified as a key region for arousal regulation, yet the specific cell types and underlying mechanisms are not fully understood. While neurons expressing orexins (OX) are considered the primary wake-promoting population in the LH, their loss does not reduce daily wake levels, suggesting the presence of additional wake-promoting populations. In this regard, we recently discovered that a non-OX cell group in the LH, marked by the expression of neurotensin (Nts), could powerfully drive wakefulness. Activation of these NtsLH neurons elicits rapid arousal from non-rapid eye movement (NREM) sleep and produces uninterrupted wakefulness for several hours in mice. However, it remains unknown if these neurons are necessary for spontaneous wakefulness and what their precise role is in the initiation and maintenance of this state. To address these questions, we first examined the activity dynamics of the NtsLH population across sleep-wake behavior using fiber photometry. We find that NtsLH neurons are more active during wakefulness, and their activity increases concurrently with, but does not precede, wake-onset. We then selectively destroyed the NtsLH neurons using a diphtheria-toxin-based conditional ablation method, which significantly reduced wake amounts and mean duration of wake bouts and increased the EEG delta power during wakefulness. These findings demonstrate a crucial role for NtsLH neurons in maintaining normal arousal levels, and their loss may be associated with chronic sleepiness in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA