RESUMO
E-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of cyclin-dependent kinase 2 (Cdk2) and thought to control the transition of quiescent cells into the cell cycle. Initial findings indicated that CcnE1 and CcnE2 have largely overlapping functions for cancer development in several tumor entities including hepatocellular carcinoma (HCC). In the present study, we dissected the differential contributions of CcnE1, CcnE2, and Cdk2 for initiation and progression of HCC in mice and patients. To this end, we tested the HCC susceptibility in mice with constitutive deficiency for CcnE1 or CcnE2 as well as in mice lacking Cdk2 in hepatocytes. Genetic inactivation of CcnE1 largely prevented development of liver cancer in mice in two established HCC models, while ablation of CcnE2 had no effect on hepatocarcinogenesis. Importantly, CcnE1-driven HCC initiation was dependent on Cdk2. However, isolated primary hepatoma cells typically acquired independence on CcnE1 and Cdk2 with increasing progression in vitro, which was associated with a gene signature involving secondary induction of CcnE2 and up-regulation of cell cycle and DNA repair pathways. Importantly, a similar expression profile was also found in HCC patients with elevated CcnE2 expression and poor survival. In general, overall survival in HCC patients was synergistically affected by expression of CcnE1 and CcnE2, but not through Cdk2. Our study suggests that HCC initiation specifically depends on CcnE1 and Cdk2, while HCC progression requires expression of any E-cyclin, but no Cdk2.
Assuntos
Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/metabolismo , Ciclina E/biossíntese , Quinase 2 Dependente de Ciclina/biossíntese , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Proteínas Oncogênicas/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Ciclinas/biossíntese , Ciclinas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/genéticaRESUMO
Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45+ cells after single injection. Acute CCl4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45+ leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. CONCLUSION: Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257).
Assuntos
Ciclina E/genética , Terapia Genética , Cirrose Hepática/prevenção & controle , Proteínas Oncogênicas/genética , RNA Interferente Pequeno/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Tetracloreto de Carbono , Proliferação de Células , Ciclina E/antagonistas & inibidores , Células Estreladas do Fígado/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Hipertrofia , Leucócitos/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/farmacologiaRESUMO
Acute kidney injury (AKI) is associated with high morbidity and mortality. Recent genetic fate mapping studies demonstrated that recovery from AKI occurs from intrinsic tubular cells. It is unresolved whether these intrinsic cells (so-called "scattered tubular cells") represent fixed progenitor cells or whether recovery involves any surviving tubular cell. Here, we show that the doxycycline-inducible parietal epithelial cell (PEC)-specific PEC-reverse-tetracycline transactivator (rtTA) transgenic mouse also efficiently labels the scattered tubular cell population. Proximal tubular cells labeled by the PEC-rtTA mouse coexpressed markers for scattered tubular cells (kidney injury molecule 1, annexin A3, src-suppressed C-kinase substrate, and CD44) and showed a higher proliferative index. The PEC-rtTA mouse labeled more tubular cells upon different tubular injuries but was independent of cellular proliferation as determined in physiological growth of the kidney. To resolve whether scattered tubular cells are fixed progenitors, cells were irreversibly labeled before ischemia reperfusion injury (genetic cell fate mapping). During recovery, the frequency of labeled tubular cells remained constant, arguing against a fixed progenitor population. In contrast, when genetic labeling was induced during ischemic injury and subsequent recovery, the number of labeled cells increased significantly, indicating that scattered tubular cells arise from any surviving tubular cell. In summary, scattered tubular cells do not represent a fixed progenitor population but rather a phenotype that can be adopted by almost any proximal tubular cell upon injury. Understanding and modulating these phenotypic changes using the PEC-rtTA mouse may lead to more specific therapies in AKI.
Assuntos
Injúria Renal Aguda/fisiopatologia , Túbulos Renais/fisiologia , Regeneração , Injúria Renal Aguda/patologia , Animais , Proliferação de Células , Túbulos Renais/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia , TransgenesRESUMO
UNLABELLED: The cytokine tumor necrosis factor alpha (TNF-α; TNF) plays a critical role early in liver regeneration following partial hepatectomy (PH). TNF stimulates at least three different pathways leading to nuclear factor kappa B (NF-κB) activation, apoptosis signaling by way of caspase-8 (Casp8), and activation of cJun N-terminal kinases (JNK). The present study aimed to better define the role of Casp8 during liver regeneration. We performed PH in mice lacking Casp8 specifically in hepatocytes (Casp8(Δhepa) ) and determined their liver regeneration capacity by measuring liver mass restoration and kinetics of cell cycle progression. Casp8(Δhepa) mice showed an accelerated onset of DNA synthesis after PH, delayed hepatocyte mitosis, but overall normal liver mass restoration. Analysis of immediate TNF-dependent signaling pathways revealed that loss of Casp8 prevents proteolytic cleavage of the receptor-interacting protein 1 (RIP1) in hepatocytes and subsequently triggers premature activation of NF-κB and JNK/cJun related signals. In order to define the role of NF-κB in this setting we blocked NF-κB activation in Casp8(Δhepa) mice by concomitant inactivation of the NF-κB essential modulator (NEMO) in hepatocytes. Lack of NEMO largely reverted aberrant DNA synthesis in Casp8(Δhepa) mice but resulted in incomplete termination of the regeneration process and hepatomegaly. CONCLUSION: Casp8 comprises a nonapoptotic function during liver regeneration by balancing RIP1, NF-κB, and JNK activation. While loss of Casp8 triggers NF-κB activation and thus improves liver regeneration, combined loss of Casp8 and NEMO impairs a controlled regenerative response and drives hepatomegaly.
Assuntos
Caspase 8/fisiologia , Hepatócitos/enzimologia , Regeneração Hepática , NF-kappa B/fisiologia , Animais , Colestase/etiologia , Proteínas Ativadoras de GTPase/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Fígado/patologia , Masculino , Camundongos , Necrose , Fosforilação , Fator de Necrose Tumoral alfa/genéticaRESUMO
UNLABELLED: Liver fibrogenesis is associated with the transition of quiescent hepatocytes and hepatic stellate cells (HSCs) into the cell cycle. Exit from quiescence is controlled by E-type cyclins (cyclin E1 [CcnE1] and cyclin E2 [CcnE2]). Thus, the aim of the current study was to investigate the contribution of E-type cyclins for liver fibrosis in man and mice. Expression of CcnE1, but not of its homolog, CcnE2, was induced in fibrotic and cirrhotic livers from human patients with different etiologies and in murine wild-type (WT) livers after periodical administration of the profibrotic toxin, CCl(4). To further evaluate the potential function of E-type cyclins for liver fibrogenesis, we repetitively treated constitutive CcnE1(-/-) and CcnE2(-/-) knock-out mice with CCl(4) to induce liver fibrosis. Interestingly, CcnE1(-/-) mice were protected against CCl(4)-mediated liver fibrogenesis, as evidenced by reduced collagen type I α1 expression and the lack of septum formation. In contrast, CcnE2(-/-) mice showed accelerated fibrogenesis after CCl(4) treatment. We isolated primary HSCs from WT, CcnE1(-/-), and CcnE2(-/-) mice and analyzed their activation, proliferation, and survival in vitro. CcnE1 expression in WT HSCs was maximal when they started to proliferate, but decreased after the cells transdifferentiated into myofibroblasts. CcnE1(-/-) HSCs showed dramatically impaired survival, cell-cycle arrest, and strongly reduced expression of alpha smooth muscle actin, indicating deficient HSC activation. In contrast, CcnE2-deficient HSCs expressed an elevated level of CcnE1 and showed enhanced cell-cycle activity and proliferation, compared to WT cells. CONCLUSIONS: CcnE1 and CcnE2 have antagonistic roles in liver fibrosis. CcnE1 is indispensable for the activation, proliferation, and survival of HSCs and thus promotes the synthesis of extracellular matrix and liver fibrogenesis.
Assuntos
Proliferação de Células , Ciclina E/fisiologia , Células Estreladas do Fígado/fisiologia , Cirrose Hepática/patologia , Proteínas Oncogênicas/fisiologia , Animais , Humanos , Masculino , CamundongosRESUMO
BACKGROUND & AIMS: Disruption of the nuclear factor-κB (NF-κB) essential modulator (NEMO) in hepatocytes of mice (NEMO(Δhepa) mice) results in spontaneous liver apoptosis and chronic liver disease involving inflammation, steatosis, fibrosis, and development of hepatocellular carcinoma. Activation of caspase-8 (Casp8) initiates death receptor-mediated apoptosis. We investigated the pathogenic role of this protease in NEMO(Δhepa) mice or after induction of acute liver injury. METHODS: We created mice with conditional deletion of Casp8 in hepatocytes (Casp8(Δhepa)) and Casp8(Δhepa)NEMO(Δhepa) double knockout mice. Acute liver injury was induced by Fas-activating antibodies, lipopolysaccharides, or concanavalin A. Spontaneous hepatocarcinogenesis was monitored by magnetic resonance imaging. RESULTS: Hepatocyte-specific deletion of Casp8 protected mice from induction of apoptosis and liver injury by Fas or lipopolysaccharides but increased necrotic damage and reduced survival times of mice given concanavalin A. Casp8(Δhepa)NEMO(Δhepa) mice were protected against steatosis and hepatocarcinogenesis but had a separate, spontaneous phenotype that included massive liver necrosis, cholestasis, and biliary lesions. The common mechanism by which inactivation of Casp8 induces liver necrosis in both injury models involves the formation of protein complexes that included the adaptor protein Fas-associated protein with death domain and the kinases receptor-interacting protein (RIP) 1 and RIP3-these have been shown to be required for programmed necrosis. We demonstrated that hepatic RIP1 was proteolytically cleaved by Casp8, whereas Casp8 inhibition resulted in accumulation of RIP complexes and subsequent liver necrosis. CONCLUSIONS: Inhibition of Casp8 protects mice from hepatocarcinogenesis following chronic liver injury mediated by apoptosis of hepatocytes but can activate RIP-mediated necrosis in an inflammatory environment.
Assuntos
Carcinoma Hepatocelular/enzimologia , Caspase 8/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Neoplasias Hepáticas Experimentais/enzimologia , Animais , Apoptose , Inibidores de Caspase , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatite Animal/enzimologia , Inflamação/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Necrose/enzimologiaRESUMO
Hepatic apoptosis is involved in the progression of alcoholic liver disease (ALD). Caspase-8, the apical initiator in death receptor-mediated apoptosis, has been implicated in acute liver injury and in non-alcoholic steatohepatitis. However, the relevance of Caspase-8 in the pathogenesis of ALD remains unclear. In the present study, we investigated the impact of Caspase-8 in human and murine alcohol-induced apoptosis and in ALD. We investigated human samples from ALD patients, primary mouse hepatocytes, and hepatocyte-specific Caspase-8 knockout (Casp8Δhepa) mice in acute and chronic models of ethanol (EtOH) administration. Caspase-8 activation was detected in liver biopsies from ALD patients, as well as in livers of wild-type (WT) mice after chronic ethanol feeding for 8 weeks using the Lieber-DeCarli model. Lack of Caspase-8 expression in Casp8Δhepa animals failed to prevent alcohol-induced liver damage and apoptosis. Instead, inhibition of Caspase-8 shifted the ethanol-induced death signals towards pronounced activation of the intrinsic, mitochondria-dependent apoptosis pathway in Casp8Δhepa livers involving enhanced release of cytochrome c, stronger Caspase-9 activation and specific morphological changes of mitochondria. In vitro and in vivo intervention using a pan-caspase inhibitor markedly attenuated alcohol-induced hepatocyte damage in a Caspase-8-independent manner. Surprisingly, EtOH-fed Casp8Δhepa mice displayed significantly attenuated steatosis and reduced hepatic triglyceride and free fatty acids content. Caspase-8 is dispensable for alcohol-induced apoptosis, but plays an unexpected role for alcohol-dependent fat metabolism. We provide evidence that simultaneous inhibition of extrinsic and intrinsic apoptosis signaling using pan-caspase inhibitors in vivo might be an optimal approach to treat alcohol-induced liver injury.