Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285245

RESUMO

As a RIG-I-like receptor, MDA5 plays a critical role in antiviral innate immunity by acting as a cytoplasmic double-stranded RNA sensor capable of initiating type I interferon pathways. Here, we show that RNF144B specifically interacts with MDA5 and promotes K27/K33-linked polyubiquitination of MDA5 at lysine 23 and lysine 43, which promotes autophagic degradation of MDA5 by p62. Rnf144b deficiency greatly promotes IFN production and inhibits EMCV replication in vivo. Importantly, Rnf144b-/- mice has a significantly higher overall survival rate than wild-type mice upon EMCV infection. Collectively, our results identify RNF144B as a negative regulator of innate antiviral response by targeting CARDs of MDA5 and mediating autophagic degradation of MDA5.

2.
PLoS Pathog ; 19(11): e1011811, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983290

RESUMO

Foot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens. Total of 39 strain-specific and 5 broad neutralizing antibodies (bnAbs) were isolated and characterized. Two conserved antigenic sites were revealed by the Cryo-EM structures of FMDV serotype A with two bnAbs W2 and W125. The contact sites with both VH and VL of W125 were closely around icosahedral threefold axis and covered the B-C, E-F, and H-I loops on VP2 and the B-B knob and H-I loop on VP3; while contact sites with only VH of W2 concentrated on B-B knob, B-C and E-F loops on VP3 scattering around the three-fold axis of viral particle. Additional highly conserved epitopes also involved key residues of VP158, VP1147 and both VP272 / VP1147 as determined respectively by bnAb W153, W145 and W151-resistant mutants. Furthermore, the epitopes recognized by 20 strain-specific neutralization antibodies involved the key residues located on VP3 68 for A/AF72 (11/20) and VP3 175 position for A/GDMM/2013 (9/19), respectively, which revealed antigenic variation between different strains of serotype A. Analysis of antibody-driven variations on capsid of two virus strains showed a relatively stable VP2 and more variable VP3 and VP1. This study provided important information on conserve and variable antigen structures to design broad-spectrum molecular vaccine against FMDV serotype A.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Anticorpos Neutralizantes , Sorogrupo , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes/genética , Epitopos , Proteínas do Capsídeo/genética , Anticorpos Monoclonais
3.
PLoS Pathog ; 17(4): e1009507, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33909694

RESUMO

The development of a universal vaccine against foot-and-mouth disease virus (FMDV) is hindered by cross-serotype antigenic diversity and by a lack of knowledge regarding neutralization of the virus in natural hosts. In this study, we isolated serotype O-specific neutralizing antibodies (NAbs) (F145 and B77) from recovered natural bovine hosts by using the single B cell antibody isolation technique. We also identified a serotype O/A cross-reacting NAb (R50) and determined virus-NAb complex structures by cryo-electron microscopy at near-atomic resolution. F145 and B77 were shown to engage the capsid of FMDV-O near the icosahedral threefold axis, binding to the BC/HI-loop of VP2. In contrast, R50 engages the capsids of both FMDV-O and FMDV-A between the 2- and 5-fold axes and binds to the BC/EF/GH-loop of VP1 and to the GH-loop of VP3 from two adjacent protomers, revealing a previously unknown antigenic site. The cross-serotype neutralizing epitope recognized by R50 is highly conserved among serotype O/A. These findings help to elucidate FMDV neutralization by natural hosts and provide epitope information for the development of a universal vaccine for cross-serotype protection against FMDV.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/virologia , Animais , Variação Antigênica , Capsídeo/imunologia , Bovinos , Microscopia Crioeletrônica/veterinária , Epitopos/imunologia , Vírus da Febre Aftosa/ultraestrutura , Sorogrupo
4.
Appl Microbiol Biotechnol ; 107(2-3): 639-650, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586016

RESUMO

OBJECTIVE: Foot-and-mouth disease (FMD) and Peste des petits ruminant disease (PPR) are acute and severe infectious diseases of sheep and are listed as animal diseases for compulsory immunization. However, there is no dual vaccine to prevent these two diseases. The Modified Vaccinia virus Ankara strain (MVA) has been widely used in the construction of recombinant live vector vaccine because of its large capacity of foreign gene, wide host range, high safety, and immunogenicity. In this study, MVA-GFP recombinant virus skeleton was used to construct dual live vector vaccines against FMD and PPR. METHODS: The recombinant plasmid pUC57-FMDV P1-2A3CPPRV FH was synthesized and transfected into MVA-GFP infected CEF cells for homologous recombination. RESULTS: The results showed that a recombinant virus without fluorescent labeling was obtained after multiple rounds of plaque screening. The recombinant virus successfully expressed the target proteins, and the empty capsid of FMDV could be observed by transmission electron microscope (TME), and the expression levels of foreign proteins (VP1 and VP3) detected by ELISA were like those detected in FMDV-infected cells. This study laid the foundation for the successful construction of a live vector vaccine against FMD and PPR. KEY POINTS: • A recombinant MVA expressing FMDVP12A3C and PRRV HF proteins • Both the FMDV and PRRV proteins inserted into the virus were expressed • The proteins expressed by the recombinant poxvirus were assembled into VLPs.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Peste dos Pequenos Ruminantes , Vacinas Virais , Ovinos , Animais , Peste dos Pequenos Ruminantes/prevenção & controle , Anticorpos Antivirais , Proteínas Virais/genética , Vírus da Febre Aftosa/genética , Vacinas Sintéticas/genética , Vacinas Virais/genética
5.
J Clin Microbiol ; 60(4): e0214221, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35254106

RESUMO

The level of neutralizing antibodies in vaccinated animals is directly related to their level of protection against a virus challenge. The virus neutralization test (VNT) is a "gold standard" method for detecting neutralizing antibodies against foot-and-mouth disease virus (FMDV). However, VNT requires high-containment facilities that can handle live viruses and is not suitable for large-scale serological surveillance. In this study, a bovine broadly neutralizing monoclonal antibody (W145) against FMDV serotype A was successfully produced using fluorescence-based single-B-cell antibody technology. Using biotinylated W145 as a detector antibody and another bovine cross-reactive monoclonal antibody, E32, which was produced previously as a capture antibody, a competitive enzyme-linked immunosorbent assay for the detection of neutralizing antibodies (NAC-ELISA) against FMDV serotype A was developed. The specificity and sensitivity of the assay were evaluated to be 99.04% and 100%, respectively. A statistically significant correlation (r = 0.9334, P < 0.0001) was observed between the NAC-ELISA titers and the VNT titers, suggesting that the NAC-ELISA could detect neutralizing antibodies against FMDV serotype A and could be used to evaluate protective immunity.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Bovinos , Ensaio de Imunoadsorção Enzimática/métodos , Febre Aftosa/diagnóstico , Febre Aftosa/prevenção & controle , Humanos , Sorogrupo
6.
J Virol ; 95(21): e0088121, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406868

RESUMO

Foot-and-mouth disease virus (FMDV) is a highly contagious virus that infects cloven-hoofed animals. Neutralizing antibodies play critical roles in antiviral infection. Although five known antigen sites that induce neutralizing antibodies have been defined, studies on cross-protective antigen sites are still scarce. We mapped two cross-protective antigen sites using 13 bovine-derived broadly neutralizing monoclonal antibodies (bnAbs) capable of neutralizing 4 lineages within 3 topotypes of FMDV serotype O. One antigen site was formed by a novel cluster of VP3-focused epitopes recognized by bnAb C4 and C4-like antibodies. The cryo-electron microscopy (cryo-EM) structure of the FMDV-OTi (O/Tibet/99)-C4 complex showed close contact with VP3 and a novel interprotomer antigen epitope around the icosahedral 3-fold axis of the FMDV particle, which is far beyond the known antigen site 4. The key determinants of the neutralizing function of C4 and C4-like antibodies on the capsid were ßB (T65), the B-C loop (T68), the E-F loop (E131 and K134), and the H-I loop (G196), revealing a novel antigen site on VP3. The other antigen site comprised two group epitopes on VP2 recognized by 9 bnAbs (B57, B73, B77, B82, F28, F145, F150, E46, and E54), which belong to the known antigen site 2 of FMDV serotype O. Notably, bnAb C4 potently promoted FMDV RNA release in response to damage to viral particles, suggesting that the targeted epitope contains a trigger mechanism for particle disassembly. This study revealed two cross-protective antigen sites that can elicit cross-reactive neutralizing antibodies in cattle and provided new structural information for the design of a broad-spectrum molecular vaccine against FMDV serotype O. IMPORTANCE FMDV is the causative agent of foot-and-mouth disease (FMD), which is one of the most contagious and economically devastating diseases of domestic animals. The antigenic structure of FMDV serotype O is rather complicated, especially for those sites that can elicit a cross-protective neutralizing antibody response. Monoclonal neutralization antibodies provide both crucial defense components against FMDV infection and valuable tools for fine analysis of the antigenic structure. In this study, we found a cluster of novel VP3-focused epitopes using 13 bnAbs against FMDV serotype O from natural host cattle, which revealed two cross-protective antigen sites on VP2 and VP3. Antibody C4 targeting this novel epitope potently promoted viral particle disassembly and RNA release before infection, which may indicate a vulnerable region of FMDV. This study reveals new structural information about cross-protective antigen sites of FMDV serotype O, providing valuable and strong support for future research on broad-spectrum vaccines against FMD.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Proteção Cruzada/imunologia , Vírus da Febre Aftosa/imunologia , Animais , Anticorpos Monoclonais/imunologia , Bovinos , Microscopia Crioeletrônica/métodos , Epitopos/química , Epitopos/imunologia , Vírus da Febre Aftosa/classificação , Sorogrupo
7.
J Virol ; 95(24): e0130821, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586859

RESUMO

Foot-and-mouth disease virus (FMDV) exhibits broad antigenic diversity with poor intraserotype cross-neutralizing activity. Studies of the determinant involved in this diversity are essential for the development of broadly protective vaccines. In this work, we isolated a bovine antibody, designated R55, that displays cross-reaction with both FMDV A/AF/72 (hereafter named FMDV-AAF) and FMDV A/WH/09 (hereafter named FMDV-AWH) but only has a neutralizing effect on FMDV-AWH. Near-atomic resolution structures of FMDV-AAF-R55 and FMDV-AWH-R55 show that R55 engages the capsids of both FMDV-AAF and FMDV-AWH near the icosahedral 3-fold axis and binds to the ßB and BC/HI-loops of VP2 and to the B-B knob of VP3. The common interaction residues are highly conserved, which is the major determinant for cross-reaction with both FMDV-AAF and FMDV-AWH. In addition, the cryo-EM structure of the FMDV-AWH-R55 complex also shows that R55 binds to VP3E70 located at the VP3 BC-loop in an adjacent pentamer, which enhances the acid and thermal stabilities of the viral capsid. This may prevent capsid dissociation and genome release into host cells, eventually leading to neutralization of the viral infection. In contrast, R55 binds only to the FMDV-AAF capsid within one pentamer due to the VP3E70G variation, which neither enhances capsid stability nor neutralizes FMDV-AAF infection. The VP3E70G mutation is the major determinant involved in the neutralizing differences between FMDV-AWH and FMDV-AAF. The crucial amino acid VP3E70 is a key component of the neutralizing epitopes, which may aid in the development of broadly protective vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious and economically devastating disease in cloven-hoofed animals, and neutralizing antibodies play critical roles in the defense against viral infections. Here, we isolated a bovine antibody (R55) using the single B cell antibody isolation technique. Enzyme-linked immunosorbent assays (ELISA) and virus neutralization tests (VNT) showed that R55 displays cross-reactions with both FMDV-AWH and FMDV-AAF but only has a neutralizing effect on FMDV-AWH. Cryo-EM structures, fluorescence-based thermal stability assays and acid stability assays showed that R55 engages the capsid of FMDV-AWH near the icosahedral 3-fold axis and informs an interpentamer epitope, which overstabilizes virions to hinder capsid dissociation to release the genome, eventually leading to neutralization of viral infection. The crucial amino acid VP3E70 forms a key component of neutralizing epitopes, and the determination of the VP3E70G mutation involved in the neutralizing differences between FMDV-AWH and FMDV-AAF could aid in the development of broadly protective vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Animais , Anticorpos Antivirais/isolamento & purificação , Variação Antigênica , Sítios de Ligação de Anticorpos , Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Bovinos , Epitopos , Testes de Neutralização
8.
Virol J ; 19(1): 40, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248059

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant threats to the global swine industry. It is of great importance to understand viral-host interactions to develop novel antiviral strategies. Long non-coding RNAs (lncRNAs) have emerged as critical factors regulating host antiviral immune responses. However, lncRNAs participating in virus-host interactions during PRRSV infection remain largely unexplored. METHOD: RNA transcripts of porcine alveolar macrophages (PAMs) infected with two different PRRSV strains, GSWW/2015 and VR2332, at 24 h post-infection were sequenced by high-throughput sequencing. Four programs namely, CNCI, CPC, PFAM, and phyloCSF, were utilized to predict the coding potential of transcripts. mRNAs co-localized or co-expressed with differentially expressed lncRNAs were considered as their targets. Fuction of lncRNAs was predicted by GO and KEGG analysis of their target mRNAs. The effect of LNC_000397 on PRRSV replication was validated by knockdown its expression using siRNA. Target genes of LNC_000397 were identified by RNA-Sequencing and validated by RT-qPCR. RESULT: In this study, we analyzed lncRNA and mRNA expression profiles of PRRSV GSWW/2015 and VR2332 infected porcine alveolar macrophages. A total of 1,147 novel lncRNAs were characterized, and 293 lncRNAs were differentially expressed. mRNAs co-localized and co-expressed with lncRNAs were enriched in pathogen-infection-related biological processes such as Influenza A and Herpes simplex infection. Functional analysis revealed the lncRNA, LNC_000397, which was up-regulated by PRRSV infection, negatively regulated PRRSV replication. Knockdown of LNC_000397 significantly impaired expression of antiviral ISGs such as MX dynamin-like GTPase 1 (MX1), ISG15 Ubiquitin-like modifier (ISG15), and radical S-adenosyl methionine domain containing 2 (RSAD2). CONCLUSIONS: LNC_000397 negatively regulated PRRSV replication by inducing interferon-stimulated genes (ISGs) expression. Our study is the first report unveiling the role of host lncRNA in regulating PRRSV replication, which might be beneficial for the development of novel antiviral therapeutics.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Longo não Codificante , Animais , Antivirais/metabolismo , Interferons/metabolismo , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Replicação Viral
9.
Vet Res ; 53(1): 56, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804412

RESUMO

Foot-and-mouth disease (FMD) remains a very serious barrier to agricultural development and the international trade of animals and animal products. Recently, serotype O has been the most prevalent FMDV serotype in China, and it has evolved into four different lineages: O/SEA/Mya-98, O/ME-SA/PanAsia, O/ME-SA/Ind-2001 and O/Cathay. PanAsia-2, belonging to the O/ME-SA topotype, is prevalent in neighbouring countries and poses the risk of cross-border spread in China. This study aimed to develop a promising vaccine candidate strain that can not only provide the best protection against all serotype O FMDVs circulating in China but also be used as an emergency vaccine for the prevention and control of transboundary incursion of PanAsia-2. Here, two chimeric FMDVs (rHN/TURVP1 and rHN/NXVP1) featuring substitution of VP1 genes of the O/TUR/5/2009 vaccine strain (PanAsia-2) and O/NXYCh/CHA/2018 epidemic strain (Mya98) were constructed and evaluated. The biological properties of the two chimeric FMDVs were similar to those of the wild-type (wt) virus despite slight differences in plaque sizes observed in BHK-21 cells. The structural protein-specific antibody titres induced by the rHN/TURVP1 and wt virus vaccines in pigs and cows were higher than those induced by the rHN/NXVP1 vaccine at 28-56 dpv. The vaccines prepared from the two chimeric viruses and wt virus all induced the production of protective cross-neutralizing antibodies against the viruses of the Mya-98, PanAsia and Ind-2001 lineages in pigs and cattle at 28 dpv; however, only the animals vaccinated with the rHN/TURVP1 vaccine produced a protective immune response to the field isolate of the Cathay lineage at 28 dpv, whereas the animals receiving the wt virus and the rHN/NXVP1 vaccines did not, although the wt virus and O/GXCX/CHA/2018 both belong to the Cathay topotype. This study will provide very useful information to help develop a potential vaccine candidate for the prevention and control of serotype O FMD in China.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Comércio , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/genética , Internacionalidade , Sorogrupo , Suínos
10.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34280085

RESUMO

Pigs are susceptible to foot-and-mouth disease virus (FMDV), and the humoral immune response plays an essential role in protection against FMDV infection. However, little information is available about FMDV-specific mAbs derived from single B cells of pigs. This study aimed to determine the antigenic features of FMDV that are recognized by antibodies from pigs. Therefore, a panel of pig-derived mAbs against FMDV were developed using fluorescence-based single B cell antibody technology. Western blotting revealed that three of the antibodies (1C6, P2-7E and P2-8G) recognized conserved antigen epitopes on capsid protein VP2, and exhibited broad reactivity against both FMDV serotypes A and O. An alanine-substitution scanning assay and sequence conservation analysis elucidated that these porcine mAbs recognized two conserved epitopes on VP2: a linear epitope (2KKTEETTLL10) in the N terminus and a conformational epitope involving residues K63, H65, L66, F67, D68 and L81 on two ß-sheets (B-sheet and C-sheet) that depended on the integrity of VP2. Random parings of heavy and light chains of the IgGs confirmed that the heavy chain is predominantly involved in binding to antigen. The light chain of porcine IgG contributes to the binding affinity toward an antigen and may function as a support platform for antibody stability. In summary, this study is the first to reveal the conserved antigenic profile of FMDV recognized by porcine B cells and provides a novel method for analysing the antibody response against FMDV in its natural hosts (i.e. pigs) at the clonal level.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Vírus da Febre Aftosa/imunologia , Suínos/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Afinidade de Anticorpos , Antígenos Virais/imunologia , Linfócitos B/imunologia , Proteínas do Capsídeo/química , Mapeamento de Epitopos , Epitopos/imunologia , Vírus da Febre Aftosa/classificação , Genes de Cadeia Pesada de Imunoglobulina , Genes de Cadeia Leve de Imunoglobulina , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA