Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742873

RESUMO

Glutamate release from rod and cone photoreceptor cells involves presynaptic ribbons composed largely of the protein RIBEYE. To examine roles of ribbons in rods and cones, we studied mice in which GCamP3 replaced the B-domain of RIBEYE. We discovered that ribbons were absent from rods and cones of both knock-in mice possessing GCamP3 and conditional RIBEYE knockout mice. The mice lacking ribbons showed reduced temporal resolution and contrast sensitivity assessed with optomotor reflexes. ERG recordings showed 50% reduction in scotopic and photopic b-waves. The readily releasable pool (RRP) of vesicles in rods and cones measured using glutamate transporter anion currents (IA(glu)) was also halved. We also studied the release from cones by stimulating them optogenetically with ChannelRhodopsin2 (ChR2) while recording postsynaptic currents in horizontal cells. Recovery of the release from paired pulse depression was twofold slower in the rods and cones lacking ribbons. The release from rods at -40 mV in darkness involves regularly spaced multivesicular fusion events. While the regular pattern of release remained in the rods lacking ribbons, the number of vesicles comprising each multivesicular event was halved. Our results support conclusions that synaptic ribbons in rods and cones expand the RRP, speed up vesicle replenishment, and augment some forms of multivesicular release. Slower replenishment and a smaller RRP in photoreceptors lacking ribbons may contribute to diminished temporal frequency responses and weaker contrast sensitivity.


Assuntos
Células Fotorreceptoras Retinianas Cones , Sinapses , Animais , Ácido Glutâmico/metabolismo , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
3.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-37425946

RESUMO

Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 is acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.

4.
Sci Data ; 5: 180005, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29406519

RESUMO

Although hair cells are the sensory receptors of the auditory and vestibular systems in the ears of all vertebrates, hair cell properties are different between non-mammalian vertebrates and mammals. To understand the basic biological properties of hair cells from non-mammalian vertebrates, we examined the transcriptome of adult zebrafish auditory and vestibular hair cells. GFP-labeled hair cells were isolated from inner-ear sensory epithelia of a pou4f3 promoter-driven GAP-GFP line of transgenic zebrafish. One thousand hair cells and 1,000 non-sensory surrounding cells (nsSCs) were separately collected for each biological replicate, using the suction pipette technique. RNA sequencing of three biological replicates for the two cell types was performed and analyzed. Comparisons between hair cells and nsSCs allow identification of enriched genes in hair cells, which may underlie hair cell specialization. Our dataset provides an extensive resource for understanding the molecular mechanisms underlying morphology, function, and pathology of adult zebrafish hair cells. It also establishes a framework for future characterization of genes expressed in hair cells and the study of hair cell evolution.


Assuntos
Células Ciliadas Auditivas Internas , Transcriptoma , Peixe-Zebra , Animais , Perfilação da Expressão Gênica , RNA
5.
PLoS One ; 11(3): e0151291, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974322

RESUMO

Regulation of gene expression is essential to determining the functional complexity and morphological diversity seen among different cells. Transcriptional regulation is a crucial step in gene expression regulation because the genetic information is directly read from DNA by sequence-specific transcription factors (TFs). Although several mouse TF databases created from genome sequences and transcriptomes are available, a cell type-specific TF database from any normal cell populations is still lacking. We identify cell type-specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes. While 1,536 are commonly expressed in both populations, 73 genes are differentially expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in OHCs. Our datasets represent the first cell type-specific TF databases for two populations of sensory receptor cells and are key informational resources for understanding the molecular mechanism underlying the biological properties and phenotypical differences of these cells.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação para Baixo/genética , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA