Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Curr Top Microbiol Immunol ; 427: 173-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31218507

RESUMO

Type III secretion systems are used by some Gram-negative bacteria to inject effector proteins into targeted eukaryotic cells for the benefit of the bacterium. The type III secretion injectisome is a complex nanomachine comprised of four main substructures including a cytoplasmic sorting platform, an envelope-spanning basal body, an extracellular needle and an exposed needle tip complex. Upon contact with a host cell, secretion is induced, resulting in the formation of a translocon pore in the host membrane. Translocon formation completes the conduit needed for effector secretion into the host cell. Control of type III secretion occurs in response to environmental signals, with the final signal being host cell contact. Secretion control occurs primarily at two sites-the cytoplasmic sorting platform, which determines secretion hierarchy, and the needle tip complex, which is critical for sensing and responding to environmental signals. The best-characterized injectisomes are those from Yersinia, Shigella and Salmonella species where there is a wealth of information on the tip complex and the two translocator proteins. Of these systems, the best characterized from a secretion regulation standpoint is Shigella. In the Shigella system, the tip complex and the first secreted translocon both contribute to secretion control and, thus, both are considered components of the tip complex. In this review, all three of these type III secretion systems are described with discussion focused on the structure and formation of the injectisome tip complex and what is known of the transition from nascent tip complex to assembled translocon pore.


Assuntos
Sistemas de Secreção Tipo III/química , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Transporte Proteico , Sistemas de Secreção Tipo III/classificação
2.
J Biol Chem ; 294(50): 19184-19196, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31699894

RESUMO

Many Gram-negative bacteria use type III secretion systems (T3SSs) to inject virulence effector proteins into eukaryotic cells. The T3SS apparatus (T3SA) is structurally conserved among diverse bacterial pathogens and consists of a cytoplasmic sorting platform, an envelope-spanning basal body, and an extracellular needle with tip complex. The sorting platform is essential for effector recognition and powering secretion. Studies using bacterial "minicells" have revealed an unprecedented level of structural detail of the sorting platform; however, many of the structure-function relationships within this complex remain enigmatic. Here, we report on improved cryo-electron tomographic approaches to enhance the resolution of the Shigella T3SA sorting platform (at ≤2 nm resolution) done in concert with biochemical and genetic methods to define the sorting platform interactome and interactions with the T3SA inner membrane ring (IR). We observed that the sorting platform consists of "pods" with 6-fold symmetry that interact with the Spa47 ATPase via radial extensions comprising MxiN. Most importantly, MxiK maintained an interaction with the IR via specific interactions with the cytoplasmic domain of the IR protein MxiG (MxiGC), which is a noncanonical forkhead-associated domain, and MxiK has an elongated structure that interacts with the IR via MxiGC T4 lysozyme-mediated insertional mutagenesis of MxiK revealed its orientation within the sorting platform and enabled disruption of interactions with its binding partners, which abolished sorting platform assembly. Finally, a comparison with the homologous interactions in the Salmonella T3SS sorting platform revealed clear differences in their IR-sorting platform interfaces that have possible mechanistic implications.


Assuntos
Proteínas de Bactérias/metabolismo , Citoplasma/metabolismo , Shigella flexneri/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação
3.
J Biol Chem ; 292(40): 16677-16687, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28842484

RESUMO

Numerous Gram-negative pathogens infect eukaryotes and use the type III secretion system (T3SS) to deliver effector proteins into host cells. One important T3SS feature is an extracellular needle with an associated tip complex responsible for assembly of a pore-forming translocon in the host cell membrane. Shigella spp. cause shigellosis, also called bacillary dysentery, and invade colonic epithelial cells via the T3SS. The tip complex of Shigella flexneri contains invasion plasmid antigen D (IpaD), which initially regulates secretion and provides a physical platform for the translocon pore. The tip complex represents a promising therapeutic target for many important T3SS-containing pathogens. Here, in an effort to further elucidate its function, we created a panel of single-VH domain antibodies (VHHs) that recognize distinct epitopes within IpaD. These VHHs recognized the in situ tip complex and modulated the infectious properties of Shigella Moreover, structural elucidation of several IpaD-VHH complexes provided critical insights into tip complex formation and function. Of note, one VHH heterodimer could reduce Shigella hemolytic activity by >80%. Our observations along with previous findings support the hypothesis that the hydrophobic translocator (IpaB in Shigella) likely binds to a region within the tip protein that is structurally conserved across all T3SS-possessing pathogens, suggesting potential therapeutic avenues for managing infections by these pathogens.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Sistemas de Secreção Bacterianos/imunologia , Epitopos/imunologia , Shigella flexneri/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Camelídeos Americanos , Evolução Molecular Direcionada , Epitopos/genética , Shigella flexneri/genética
4.
J Bacteriol ; 198(15): 2131-9, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246568

RESUMO

UNLABELLED: Intracellular bacterial pathogens in the family Chlamydiaceae are causes of human blindness, sexually transmitted disease, and pneumonia. Genetic dissection of the mechanisms of chlamydial pathogenicity has been hindered by multiple limitations, including the inability to inactivate genes that would prevent the production of elementary bodies. Many genes are also Chlamydia-specific genes, and chlamydial genomes have undergone extensive reductive evolution, so functions often cannot be inferred from homologs in other organisms. Conditional mutants have been used to study essential genes of many microorganisms, so we screened a library of 4,184 ethyl methanesulfonate-mutagenized Chlamydia trachomatis isolates for temperature-sensitive (TS) mutants that developed normally at physiological temperature (37°C) but not at nonphysiological temperatures. Heat-sensitive TS mutants were identified at a high frequency, while cold-sensitive mutants were less common. Twelve TS mutants were mapped using a novel markerless recombination approach, PCR, and genome sequencing. TS alleles of genes that play essential roles in other bacteria and chlamydia-specific open reading frames (ORFs) of unknown function were identified. Temperature-shift assays determined that phenotypes of the mutants manifested at distinct points in the developmental cycle. Genome sequencing of a larger population of TS mutants also revealed that the screen had not reached saturation. In summary, we describe the first approach for studying essential chlamydial genes and broadly applicable strategies for genetic mapping in Chlamydia spp. and mutants that both define checkpoints and provide insights into the biology of the chlamydial developmental cycle. IMPORTANCE: Study of the pathogenesis of Chlamydia spp. has historically been hampered by a lack of genetic tools. Although there has been recent progress in chlamydial genetics, the existing approaches have limitations for the study of the genes that mediate growth of these organisms in cell culture. We used a genetic screen to identify conditional Chlamydia mutants and then mapped these alleles using a broadly applicable recombination strategy. Phenotypes of the mutants provide fundamental insights into unexplored areas of chlamydial pathogenesis and intracellular biology. Finally, the reagents and approaches we describe are powerful resources for the investigation of these organisms.


Assuntos
Chlamydia trachomatis/fisiologia , Recombinação Genética , Temperatura , Alelos , Chlamydia trachomatis/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Genótipo , Células HeLa , Humanos , Mutação
5.
Mol Microbiol ; 95(3): 365-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25382739

RESUMO

Cell division in Chlamydiae is poorly understood as apparent homologs to most conserved bacterial cell division proteins are lacking and presence of elongation (rod shape) associated proteins indicate non-canonical mechanisms may be employed. The rod-shape determining protein MreB has been proposed as playing a unique role in chlamydial cell division. In other organisms, MreB is part of an elongation complex that requires RodZ for proper function. A recent study reported that the protein encoded by ORF CT009 interacts with MreB despite low sequence similarity to RodZ. The studies herein expand on those observations through protein structure, mutagenesis and cellular localization analyses. Structural analysis indicated that CT009 shares high level of structural similarity to RodZ, revealing the conserved orientation of two residues critical for MreB interaction. Substitutions eliminated MreB protein interaction and partial complementation provided by CT009 in RodZ deficient Escherichia coli. Cellular localization analysis of CT009 showed uniform membrane staining in Chlamydia. This was in contrast to the localization of MreB, which was restricted to predicted septal planes. MreB localization to septal planes provides direct experimental observation for the role of MreB in cell division and supports the hypothesis that it serves as a functional replacement for FtsZ in Chlamydia.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/fisiologia , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Chlamydia trachomatis/citologia , Simulação por Computador , Cristalografia por Raios X , Proteínas do Citoesqueleto/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Morfogênese , Mutagênese , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
6.
J Biol Chem ; 289(46): 32214-32229, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25253688

RESUMO

The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5'-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5'-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 10(3) M(-1) s(-1)), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5'-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/metabolismo , Vitamina K 2/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Desoxiadenosinas/química , Ligantes , Dados de Sequência Molecular , Nucleosídeos/química , Nucleotidases/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteoma , Proteínas Recombinantes/química , S-Adenosil-Homocisteína/química , Homologia de Sequência de Aminoácidos , Tionucleosídeos/química
7.
Biochemistry ; 53(1): 214-24, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24354275

RESUMO

Asymmetric diadenosine 5',5‴-P(1),P(4)-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologues to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αßα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH).


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , Hidrolases Anidrido Ácido/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Alinhamento de Sequência
8.
Artigo em Inglês | MEDLINE | ID: mdl-24192348

RESUMO

Chlamydia trachomatis is a major cause of various diseases, including blinding trachoma and pelvic inflammatory disease, and is the leading reported sexually transmitted bacterial infection worldwide. All pathogenic Chlamydiae spp. utilize a supramolecular syringe, or type III secretion system (T3SS), to inject proteins into their obligate host in order to propagate infection. Here, the structure of CT584, a T3SS-associated protein, that has been refined to a resolution of 3.05 Šis reported. The CT584 structure is a hexamer comprised of a trimer of dimers. The structure shares a high degree of similarity to the recently reported structure of an orthologous protein, Cpn0803, from Chlamydia pneumoniae, which highlights the highly conserved nature of this protein across these chlamydial species, despite different tissue tropism and disease pathology.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/metabolismo , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Multimerização Proteica
9.
Biochemistry ; 51(28): 5611-21, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22734632

RESUMO

Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg(2+)-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k(cat) decreased 10(3)- and 10(5)-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp(283) functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ("P-loop") provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Ácido Mevalônico/análogos & derivados , Staphylococcus epidermidis/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Carboxiliases/antagonistas & inibidores , Carboxiliases/genética , Catálise , Cristalografia por Raios X , Ácido Mevalônico/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nucleotídeos/química , Conformação Proteica
10.
Biochemistry ; 51(23): 4713-22, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22510038

RESUMO

Hymeglusin (1233A, F244, L-659-699) is established as a specific ß-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 Å) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.


Assuntos
Enterococcus faecalis/enzimologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Hidroximetilglutaril-CoA Sintase/antagonistas & inibidores , Lactonas/farmacologia , Clonagem Molecular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Ácidos Graxos Insaturados/química , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Humanos , Hidroxilamina/química , Hidroxilamina/farmacologia , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Cinética , Lactonas/química , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Difração de Raios X
11.
J Biol Chem ; 286(27): 23900-10, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561869

RESUMO

The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Šresolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Šresolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Šresolution). Comparison of these structures provides a physical basis for the significant differences in K(i) values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser(192) as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases k(cat) by ∼10(3)-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Šcocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.


Assuntos
Proteínas de Bactérias/química , Staphylococcus epidermidis/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carboxiliases , Cristalografia por Raios X , Hemiterpenos/química , Hemiterpenos/genética , Hemiterpenos/metabolismo , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , Mutação de Sentido Incorreto , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Staphylococcus epidermidis/genética , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Proteins ; 80(3): 935-45, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22423359

RESUMO

Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nanomachine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices α3 and α7, with concomitant movement in the orientation of helix α7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Desoxicólico/metabolismo , Shigella flexneri/química , Shigella flexneri/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Shigella flexneri/genética
13.
Front Cell Infect Microbiol ; 11: 682635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150677

RESUMO

Shigella flexneri, causative agent of bacillary dysentery (shigellosis), uses a type III secretion system (T3SS) as its primary virulence factor. The T3SS injectisome delivers effector proteins into host cells to promote entry and create an important intracellular niche. The injectisome's cytoplasmic sorting platform (SP) is a critical assembly that contributes to substrate selection and energizing secretion. The SP consists of oligomeric Spa33 "pods" that associate with the basal body via MxiK and connect to the Spa47 ATPase via MxiN. The pods contain heterotrimers of Spa33 with one full-length copy associated with two copies of a C-terminal domain (Spa33C). The structure of Spa33C is known, but the precise makeup and structure of the pods in situ remains elusive. We show here that recombinant wild-type Spa33 can be prepared as a heterotrimer that forms distinct stable complexes with MxiK and MxiN. In two-hybrid analyses, association of the Spa33 complex with these proteins occurs via the full-length Spa33 component. Furthermore, these complexes each have distinct biophysical properties. Based on these properties, new high-resolution cryo-electron tomography data and architectural similarities between the Spa33 and flagellar FliM-FliN complexes, we provide a preliminary model of the Spa33 heterotrimers within the SP pods. From these findings and evolving models of SP interfaces and dynamics in the Yersinia and Salmonella T3SS, we suggest a model for SP function in which two distinct complexes come together within the context of the SP to contribute to form the complete pod structures during the recruitment of T3SS secretion substrates.


Assuntos
Shigella , Sistemas de Secreção Tipo III , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Proteico , Shigella/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo , Sistemas de Secreção Tipo III/genética
14.
BMC Struct Biol ; 10: 21, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20633281

RESUMO

BACKGROUND: Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. RESULTS: In this study, we present the 3.3 A crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC1-151). Specifically, we observe a rotationally-symmetric "head-to- head" dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC1-151. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. CONCLUSIONS: From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may transition between asymmetric and symmetric dimers in response to changes in either biochemical modifications (e.g. proteolytic cleavage) or other biological cues. Such transitions may contribute to the broad range of protein-protein interactions and functions attributed to class II chaperones.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Quaternária de Proteína , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Rotação , Shigella flexneri
15.
Artigo em Inglês | MEDLINE | ID: mdl-29868501

RESUMO

Invasion of epithelial cells by the obligate intracellular bacterium Chlamydia trachomatis results in its enclosure inside a membrane-bound compartment termed an inclusion. The bacterium quickly begins manipulating interactions between host intracellular trafficking and the inclusion interface, diverging from the endocytic pathway and escaping lysosomal fusion. We have identified a previously uncharacterized protein, CT622, unique to the Chlamydiaceae, in the absence of which most bacteria failed to establish a successful infection. CT622 is abundant in the infectious form of the bacteria, in which it associates with CT635, a putative novel chaperone protein. We show that CT622 is translocated into the host cytoplasm via type three secretion throughout the developmental cycle of the bacteria. Two separate domains of roughly equal size have been identified within CT622 and a 1.9 Å crystal structure of the C-terminal domain has been determined. Genetic disruption of ct622 expression resulted in a strong bacterial growth defect, which was due to deficiencies in proliferation and in the generation of infectious bacteria. Our results converge to identify CT622 as a secreted protein that plays multiple and crucial roles in the initiation and support of the C. trachomatis growth cycle. They reveal that genetic disruption of a single effector can deeply affect bacterial fitness.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proliferação de Células , Chlamydia trachomatis/genética , Clonagem Molecular , Citoplasma/química , Citoplasma/microbiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Conformação Proteica , Via Secretória , Alinhamento de Sequência , Sistemas de Secreção Tipo III
16.
Protein Sci ; 27(8): 1392-1406, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29672980

RESUMO

Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle "tip complex" (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction. IpaB insertion into the host membrane is the first step of translocon pore formation and secretion induction. We employed disruptive insertional mutagenesis, using bacteriophage T4 lysozyme (T4L), within predicted IpaB loops to show how topological features affect TC functions (secretion control, translocon formation and effector secretion). Insertions within the N-terminal half of IpaB were most likely to result in a loss of steady-state secretion control, however, all but the two that were not recognized by the T3SA retained nearly wild-type hemolysis (translocon formation) and invasiveness levels (effector secretion). In contrast, all but one insertion in the C-terminal half of IpaB maintained secretion control but were impaired for hemolysis and invasion. These nature of the data suggest the latter mutants are defective in a post-secretion event, most likely due to impaired interactions with the second translocator protein IpaC. Intriguingly, only two insertion mutants displayed readily detectable T4L on the bacterial surface. The data create a picture in which the makeup and structure of a functional T3SA TC is highly amenable to physical perturbation, indicating that the tertiary structure of IpaB within the TC is more plastic than previously realized.


Assuntos
Proteínas de Bactérias , Mutagênese Insercional/métodos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Células Cultivadas , Eritrócitos , Hemólise , Ovinos , Sistemas de Secreção Tipo III , Difração de Raios X
17.
Methods Mol Biol ; 1531: 81-91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27837483

RESUMO

In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Membrana Celular/química , Lipossomos , Fosfolipídeos/química , Ligação Proteica , Shigella/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
18.
Methods Mol Biol ; 1531: 173-181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27837491

RESUMO

Type III secretion systems (T3SS) are highly conserved virulence factors employed by a large number of pathogenic gram-negative bacteria. Like many T3SS translocators, recombinant expression of the hydrophobic Shigella protein IpaB requires the presence of its cognate chaperone IpgC. Chaperone-bound IpaB is maintained in a nonfunctional state, which has hampered in vitro studies aimed at understanding molecular structure and function of this important class of T3SS proteins. Herein, we describe an expression and purification protocol that utilizes mild detergents to produce highly purified, homogeneous IpaB of defined oligomeric states.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas Recombinantes , Proteínas de Bactérias/metabolismo , Cromatografia de Afinidade , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Chaperonas Moleculares/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
19.
Protein Sci ; 26(10): 2059-2072, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28736824

RESUMO

Polyvalent antigen display is an effective strategy to enhance the immunogenicity of subunit vaccines by clustering them in an array-like manner on a scaffold system. This strategy results in a higher local density of antigens, increased high avidity interactions with B cells and other antigen presenting cells, and therefore a more effective presentation of vaccine antigens. In this study, we used lumazine synthase (LS), an icosahedral symmetry capsid derived from Bacillus anthracis, as a scaffold to present 60 copies of a linear B cell epitope (PB10) from the ricin toxin fused to the C terminus of LS via four different linkers. We then investigated the effects of linker length, linker rigidity and formaldehyde crosslinking on the protein assembly, conformational integrity, thermal stability, in vitro antibody binding, and immunogenicity in mice. Fusion of the PB10 peptide onto LS, with varying linker lengths, did not affect protein assembly, thermal stability or exposure of the epitope, but had a minor impact on protein conformation. Formaldehyde crosslinking considerably improved protein thermal stability with only minor impact on protein conformation. All LS_PB10 constructs, when administered to mice by injection without adjuvant, elicited measurable anti-ricin serum IgG titers, although the titers were not sufficient to confer protection against a 10× lethal dose ricin challenge. This work sheds light on the biophysical properties, immunogenicity and potential feasibility of LS from B. anthracis as a scaffold system for polyvalent antigen display.


Assuntos
Vacinas contra Antraz , Antígenos de Bactérias , Bacillus anthracis , Epitopos de Linfócito B , Complexos Multienzimáticos , Vacinas de Subunidades Antigênicas , Animais , Vacinas contra Antraz/química , Vacinas contra Antraz/genética , Vacinas contra Antraz/imunologia , Vacinas contra Antraz/metabolismo , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Bacillus anthracis/enzimologia , Bacillus anthracis/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/imunologia , Complexos Multienzimáticos/metabolismo , Estabilidade Proteica , Ricina/química , Ricina/genética , Ricina/imunologia , Ricina/metabolismo , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/metabolismo
20.
Microbes Infect ; 18(4): 245-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26706820

RESUMO

Numerous Chlamydia trachomatis proteins have been identified as potential subunit vaccines, of which the major outer-membrane protein (MOMP) has, so far, proven the most efficacious. Recently, subunit A of the V-type ATP synthase (ATPase; TC0582) complex was shown to elicit partial protection against infection. Computational modeling of a neighboring gene revealed a novel subunit of the V-type ATPase (TC0583). To determine if this newly identified subunit could induce protection and/or enhance the partial protection provided by subunit A alone, challenge studies were performed using a combination of these recombinant proteins. The TC0583 subunit alone and concurrently with TC0582, was used to vaccinate BALB/c mice utilizing CpG-1826 and Montanide ISA 720 VG as adjuvants. Vaccinated animals were challenged intranasally with Chlamydia muridarum and the course of the infection was followed. Mice immunized with individual antigens showed minimal alleviation of body weight reduction; however, mice immunized with TC0583 and TC0582 in combination, displayed weight loss levels close to those observed with MOMP. Importantly, immunization with a combination of recombinant subunit proteins reduced chlamydial inclusion forming units by approximately a log-fold. These protection levels support that, these highly conserved Chlamydia proteins, in combination with other antigens, may serve as potential vaccine candidates.


Assuntos
Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/imunologia , Vacinas Bacterianas/imunologia , Chlamydia muridarum/enzimologia , Chlamydia muridarum/imunologia , Complexos de ATP Sintetase/genética , Adjuvantes Imunológicos/administração & dosagem , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Infecções por Chlamydia/prevenção & controle , Corpos de Inclusão/microbiologia , Camundongos Endogâmicos BALB C , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA