Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biophys J ; 122(19): 3924-3936, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37608550

RESUMO

Second-harmonic generation (SHG) in biological tissues originates predominantly from noncentrosymmetric fibrillar structures partially oriented within a focal volume (voxel) of a multiphoton excitation microscope. This study is aimed to elucidate fibrillar organization factors influencing SHG intensity, as well as achiral, R, and chiral, C, nonlinear susceptibility tensor component ratios. SHG response is calculated for various configurations of fibrils in a voxel using the digital nonlinear microscope. The R and C ratios are calculated using linear incident and outgoing polarization states that simulate polarization-in polarization-out polarimetric measurements. The investigation shows strong SHG intensity dependence on parallel/antiparallel fiber organization. The R and C ratios are strongly influenced by the fiber chirality, tilting of the fibers out of the image plane, and crossing of the fibers. The computational modeling provides the basis for the interpretation of polarimetric SHG microscopy images in terms of the ultrastructural organization of fibers in each voxel of the samples. The modeling results are employed in the accompanying paper to investigate the ultrastructures with parallel/antiparallel fibers and two-dimensional and tree-dimensional crossing fibers in biological and biomimetic structures.

2.
Biophys J ; 122(19): 3937-3949, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37621088

RESUMO

Polarimetric second harmonic generation (SHG) microscopy imaging is employed to investigate the ultrastructural organization of biological and biomimetic partially oriented fibrillar structures. The linear polarization-in polarization-out SHG microscopy measurements are conducted with rat tail tendon, rabbit cornea, pig cartilage, and biomimetic meso-tetra(4-sulfonatophenyl)porphine (TPPS4) cylindrical aggregates, which represent different two- and three-dimensional (2D and 3D) configurations of C6 symmetry fibril structures in the focal volume (voxel) of the microscope. The polarization-in polarization-out imaging of rat tail tendon reveals that SHG intensity is affected by parallel/antiparallel arrangements of the fibers, and achiral (R) and chiral (C) susceptibility component ratio values change by tilting the tendon fibers out of image plane. The R ratio changes for the 2D crossing fibers observed in cornea tissue. The 3D crossing of fibers also affects R ratio in cartilage tissue. The distinctly different dependence of R on crossing and tilting of fibers is demonstrated in collagen and TPPS4 aggregates, due to the achiral molecular susceptibility ratio having values below and above 3, respectively. The polarimetric microscopy results correspond well with the analytical expressions of amplitude and R and C ratios dependence on the crossing angle of the fibers. The experimentally measured SHG intensity and R and C ratio maps are consistent with the computational modeling of various fiber configurations presented in the preceding article. The demonstrated SHG intensity and R and C ratio dependencies on fibril configurations provide the basis for interpreting polarimetric SHG microscopy images in terms of 3D ultrastructural organization of fibers in each voxel of the samples.

3.
Phys Chem Chem Phys ; 23(36): 20201-20217, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34473146

RESUMO

Microscopic theory for the second harmonic generation in a helical molecular system is developed in the minimal coupling representation including non-local interaction effects. At the second order to the field we find a compact expression which combines dipolar, quadrupolar and magnetic contributions. A detailed derivation of the response is performed to specifically isolate the quadratic coupling terms, which we denote as the K coupling. Applying the theory to a helical macromolecule we find that the dipolar and quadrupolar contributions reflect the symmetry properties of the system and its homogeneity, while the K coupling contribution reveals inhomogeneities of the system.

4.
Lab Invest ; 100(10): 1280-1287, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737408

RESUMO

Polarization-sensitive second harmonic generation (SHG) microscopy is an established imaging technique able to provide information related to specific molecular structures including collagen. In this investigation, polarization-sensitive SHG microscopy was used to investigate changes in the collagen ultrastructure between histopathology slides of normal and diseased human thyroid tissues including follicular nodular disease, Grave's disease, follicular variant of papillary thyroid carcinoma, classical papillary thyroid carcinoma, insular or poorly differentiated carcinoma, and anaplastic or undifferentiated carcinoma ex vivo. The second-order nonlinear optical susceptibility tensor component ratios, χ(2)zzz'/χ(2)zxx' and χ(2)xyz'/χ(2)zxx', were obtained, where χ(2)zzz'/χ(2)zxx' is a structural parameter and χ(2)xyz'/χ(2)zxx' is a measure of the chirality of the collagen fibers. Furthermore, the degree of linear polarization (DOLP) of the SHG signal was measured. A statistically significant increase in χ(2)zzz'/χ(2)zxx' values for all the diseased tissues except insular carcinoma and a statistically significant decrease in DOLP for all the diseased tissues were observed compared to normal thyroid. This finding indicates a higher ultrastructural disorder in diseased collagen and provides an innovative approach to discriminate between normal and diseased thyroid tissues that is complementary to standard histopathology.


Assuntos
Colágeno/metabolismo , Microscopia de Geração do Segundo Harmônico/métodos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Carcinoma Papilar, Variante Folicular/diagnóstico por imagem , Carcinoma Papilar, Variante Folicular/metabolismo , Carcinoma Papilar, Variante Folicular/patologia , Diferenciação Celular , Colágeno/química , Colágeno/ultraestrutura , Diagnóstico Diferencial , Doença de Graves/diagnóstico por imagem , Doença de Graves/metabolismo , Doença de Graves/patologia , Humanos , Microscopia de Geração do Segundo Harmônico/instrumentação , Microscopia de Geração do Segundo Harmônico/estatística & dados numéricos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Doenças da Glândula Tireoide/diagnóstico por imagem , Doenças da Glândula Tireoide/metabolismo , Doenças da Glândula Tireoide/patologia , Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/patologia
5.
J Struct Biol ; 199(2): 153-164, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28655593

RESUMO

Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour.


Assuntos
Osso e Ossos/química , Colágeno Tipo I/ultraestrutura , Metástase Neoplásica/fisiopatologia , Animais , Desenvolvimento Ósseo , Osso e Ossos/patologia , Osso e Ossos/ultraestrutura , Linhagem Celular Tumoral , Feminino , Células HeLa , Xenoenxertos , Humanos , Osteoblastos/patologia , Osteólise/patologia , Ratos , Coluna Vertebral/química , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia
6.
Opt Express ; 25(12): 13174-13189, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788853

RESUMO

An experimental implementation of the nonlinear Stokes-Mueller polarimetric (NSMP) microscopy in third-harmonic generation modality is presented. The technique is able to extract all eight 2D-accessible χ(3) components for any sample from 64 polarization measurements, and can be applied to noninvasive ultrastructural characterization. The polarization signature of an isotropic glass coverslip is presented, and carotenoid crystallites in the root of orange carrot (Daucus carota) are investigated, showing complex χ(3) components with a significant chiral contribution.

7.
Angew Chem Int Ed Engl ; 54(47): 13928-32, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26418395

RESUMO

Nonlinear optical microscopy has become a powerful tool for high-resolution imaging of cellular and subcellular composition, morphology, and interactions because of its high spatial resolution, deep penetration, and low photo-damage to tissue. Developing specific harmonic probes is essential for exploiting nonlinear microscopic imaging for biomedical applications. We report an organized aggregate of porphyrins (OAP) that formed within lipidic nanoparticles showing fingerprint spectroscopic properties, structure-associated second harmonic generation, and superradiant third harmonic generation. The OAP facilitated harmonic microscopic imaging of living cells with significantly enhanced contrast. The structure-dependent switch between harmonic (OAP-intact) and fluorescence (OAP-disrupted) generation enabled real-time multi-modality imaging of the cellular fate of nanoparticles. Robustly produced under various conditions and easily incorporated into pre-formed lipid nanovesicles, OAP provides a biocompatible nanoplatform for harmonic imaging.


Assuntos
Bicamadas Lipídicas/química , Microscopia/métodos , Porfirinas/química , Linhagem Celular Tumoral , Humanos
8.
Nanotechnology ; 25(50): 505703, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25431947

RESUMO

We demonstrate a noninvasive optical microscopy technique based on polarization-dependent second harmonic generation for determining the crystal lattice structure and microscopic heterogeneities within individual nanostructures. Differentiation between periodically twinned and wurtzite ZnSe nanowires (NWs) was demonstrated, and measurement of the cubic lattice rotation orientation around the NW axis was determined within 1° accuracy. Zinc blende NWs were differentiated from wurtzite. The technique can be used for quality inspection and optimization of growth conditions for nanostructures.

9.
Int J Mol Sci ; 14(9): 18520-34, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24022688

RESUMO

Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.


Assuntos
Microscopia de Polarização/métodos , Microscopia/métodos , Microscopia/instrumentação , Microscopia de Polarização/instrumentação
10.
Nanophotonics ; 12(11): 2061-2071, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215945

RESUMO

Second harmonic generation (SHG) microscopy is a commonly used technique to study the organization of collagen within tissues. However, individual collagen fibrils, which have diameters much smaller than the resolution of most optical systems, have not been extensively investigated. Here we probe the structure of individual collagen fibrils using polarization-resolved SHG (PSHG) microscopy and atomic force microscopy. We find that longitudinally polarized light occurring at the edge of a focal volume of a high numerical aperture microscope objective illuminated with linearly polarized light creates a measurable variation in PSHG signal along the axis orthogonal to an individual collagen fibril. By comparing numerical simulations to experimental data, we are able to estimate parameters related to the structure and chirality of the collagen fibril without tilting the sample out of the image plane, or cutting tissue at different angles, enabling chirality measurements on individual nanostructures to be performed in standard PSHG microscopes. The results presented here are expected to lead to a better understanding of PSHG results from both collagen fibrils and collagenous tissues. Further, the technique presented can be applied to other chiral nanoscale structures such as microtubules, nanowires, and nanoribbons.

11.
J Biophotonics ; 16(5): e202200284, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36651498

RESUMO

We employ wide-field second harmonic generation (SHG) microscopy together with nonlinear Stokes polarimetry for quick ultrastructural investigation of large sample areas (700 µm × 700 µm) in thin histology sections. The Stokes vector components for SHG are obtained from the polarimetric measurements with incident and outgoing linear and circular polarization states. The Stokes components are used to construct the images of polarimetric parameters and deduce the maps of ultrastructural parameters of achiral and chiral nonlinear susceptibility tensor components ratios and cylindrical axis orientation in fibrillar materials. The large area imaging was employed for lung tumor margin investigations. The imaging shows reduced SHG intensity, increased achiral susceptibility ratio values, and preferential orientation of collagen strands along the boarder of tumor margin. The wide-field Stokes polarimetric SHG microscopy opens a possibility of quick large area imaging of ultrastructural parameters of tissue collagen, which can be used for nonlinear histopathology investigations.


Assuntos
Microscopia , Microscopia de Geração do Segundo Harmônico , Microscopia de Geração do Segundo Harmônico/métodos , Análise Espectral , Colágeno/química , Miócitos Cardíacos
12.
Biophys J ; 103(10): 2093-105, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23200043

RESUMO

The second-order nonlinear polarization properties of fibrillar collagen in various rat tissues (vertebrae, tibia, tail tendon, dermis, and cornea) are investigated with polarization-dependent second-harmonic generation (P-SHG) microscopy. Three parameters are extracted: the second-order susceptibility ratio, R = [Formula: see text] ; a measure of the fibril distribution asymmetry, |A|; and the weighted-average fibril orientation, <δ>. A hierarchical organizational model of fibrillar collagen is developed to interpret the second-harmonic generation polarization properties. Highlights of the model include: collagen type (e.g., type-I, type-II), fibril internal structure (e.g., straight, constant-tilt), and fibril architecture (e.g., parallel fibers, intertwined, lamellae). Quantifiable differences in internal structure and architecture of the fibrils are observed. Occurrence histograms of R and |A| distinguished parallel from nonparallel fibril distributions. Parallel distributions possessed low parameter values and variability, whereas nonparallel distributions displayed an increase in values and variability. From the P-SHG parameters of vertebrae tissue, a three-dimensional reconstruction of lamellae of intervertebral disk is presented.


Assuntos
Colágenos Fibrilares/química , Modelos Moleculares , Especificidade de Órgãos , Animais , Fenômenos Biomecânicos , Disco Intervertebral/anatomia & histologia , Microscopia de Polarização , Ratos , Cauda , Tendões
13.
Phys Chem Chem Phys ; 14(30): 10653-61, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22744726

RESUMO

The use of carotenoids as biologically friendly labels for third harmonic generation (THG) microscopy is demonstrated. Carotenoid containing liposomes are used to label cell structures via liposome cell fusion. The THG microscopy labels, called harmonophores, were characterized by measuring the third-order nonlinear susceptibility (χ((3))) of carotenoids: violaxanthin, neoxanthin, lutein, ß-carotene, zeaxanthin, canthaxanthin and astaxanthin. The THG ratio method was used, which is based on measuring the THG intensity from two interfaces using a nonlinear optical microscope. The second hyperpolarizability values of carotenoids were extracted from χ((3)) measurements taking into account the refractive index at fundamental and third harmonic wavelengths. The length dependence of the second hyperpolarizability of conjugated polyenes from 9 to 13 double bonds with varying oxygen functional groups was investigated. It appears that the presence of epoxides can have a higher influence than an additional conjugated double bond. Furthermore, labelling of both Drosophila Schneider 2 cells and Drosophila melanogaster larvae myocytes with ß-carotene was achieved. This study demonstrates that THG enhancement by carotenoids can be used for nontoxic in vivo labelling of subcellular structures for third harmonic generation microscopy.


Assuntos
Carotenoides/química , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Larva/citologia , Lipossomos/química , Microscopia , Células Musculares/metabolismo , Oxigênio/química , Polienos/química , beta Caroteno/química
14.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454798

RESUMO

Personalized cancer theranostics has a potential to increase efficiency of early cancer diagnostics and treatment, and to reduce negative side-effects. Protein-stabilized gold nanoclusters may serve as theranostic agents. To make gold nanoclusters personalized and highly biocompatible, the clusters were stabilized with human plasma proteins. Optical properties of synthesized nanoclusters were investigated spectroscopically, and possible biomedical application was evaluated using standard cell biology methods. The spectroscopic investigations of human plasma proteins stabilized gold nanoclusters revealed that a wide photoluminescence band in the optical tissue window is suitable for cancer diagnostics. High-capacity generation of singlet oxygen and other reactive oxygen species was also observed. Furthermore, the cluster accumulation in cancer cells and the photodynamic effect were evaluated. The results demonstrate that plasma proteins stabilized gold nanoclusters that accumulate in breast cancer cells and are non-toxic in the dark, while appear phototoxic under irradiation with visible light. The results positively confirm the utility of plasma protein stabilized gold nanoclusters for the use in cancer diagnostics and treatment.

15.
Sci Rep ; 12(1): 10290, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717344

RESUMO

The extracellular matrix (ECM) collagen undergoes major remodeling during tumorigenesis. However, alterations to the ECM are not widely considered in cancer diagnostics, due to mostly uniform appearance of collagen fibers in white light images of hematoxylin and eosin-stained (H&E) tissue sections. Polarimetric second-harmonic generation (P-SHG) microscopy enables label-free visualization and ultrastructural investigation of non-centrosymmetric molecules, which, when combined with texture analysis, provides multiparameter characterization of tissue collagen. This paper demonstrates whole slide imaging of breast tissue microarrays using high-throughput widefield P-SHG microscopy. The resulting P-SHG parameters are used in classification to differentiate tumor from normal tissue, resulting in 94.2% for both accuracy and F1-score, and 6.3% false discovery rate. Subsequently, the trained classifier is employed to predict tumor tissue with 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate. As such, we show that widefield P-SHG microscopy reveals collagen ultrastructure over large tissue regions and can be utilized as a sensitive biomarker for cancer diagnostics and prognostics studies.


Assuntos
Neoplasias , Microscopia de Geração do Segundo Harmônico , Colágeno/química , Matriz Extracelular/patologia , Aprendizado de Máquina , Neoplasias/diagnóstico , Neoplasias/patologia , Prognóstico , Microscopia de Geração do Segundo Harmônico/métodos
16.
Sci Rep ; 12(1): 20713, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456811

RESUMO

The extracellular matrix (ECM) is amongst many tissue components affected by cancer, however, morphological changes of the ECM are not well-understood and thus, often omitted from diagnostic considerations. Polarimetric second-harmonic generation (P-SHG) microscopy allows for visualization and characterization of collagen ultrastructure in the ECM, aiding in better understanding of the changes induced by cancer throughout the tissue. In this paper, a large region of hematoxylin and eosin (H&E) stained human lung section, encompassing a tumor margin, connecting a significant tumor portion to normal tissue was imaged with P-SHG microscopy. The resulting polarimetric parameters were utilized in principal components analysis and unsupervised K-Means clustering to separate normal- and tumor-like tissue. Consequently, a pseudo-color map of the clustered tissue regions is generated to highlight the irregularity of the ECM collagen structure throughout the region of interest and to identify the tumor margin, in the absence of morphological characteristics of the cells.


Assuntos
Neoplasias Pulmonares , Microscopia de Geração do Segundo Harmônico , Humanos , Margens de Excisão , Análise Espectral , Matriz Extracelular
17.
J Comput Chem ; 32(6): 1128-34, 2011 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-21387339

RESUMO

With polarization dependent second harmonic generation (SHG) microscopy becoming a more popular method for investigating the structure of biological materials, there is a need to develop tools with which to understand and interpret the observed SHG properties. Quantum mechanical calculations of the hyperpolarizability tensor have become a popular method for understanding the SHG properties of biomolecules. Visualization of the full hyperpolarizability tensor, termed the unit sphere representation, has been developed to provide insight and intuition on the relationship between SHG properties and molecules. A single vector representation is also presented, which approximates the SHG properties of molecules for certain cases, where the anisotropy is negligible.

18.
BMC Mol Cell Biol ; 22(1): 38, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256704

RESUMO

BACKGROUND: Proper muscle function is heavily dependent on highly ordered protein complexes. UNC45 is a USC (named since this region is shared by three proteins UNC45/CRO1/She4P) chaperone that is necessary for myosin incorporation into the thick filaments. UNC45 is expressed throughout the entire Drosophila life cycle and it has been shown to be important during late embryogenesis when initial muscle development occurs. However, the effects of UNC45 manipulation at later developmental times, after muscle development, have not yet been studied. MAIN RESULTS: UNC45 was knocked down with RNAi in a manner that permitted survival to the pupal stage, allowing for characterization of sarcomere organization in the well-studied third instar larvae. Second harmonic generation (SHG) microscopy revealed changes in the striated pattern of body wall muscles as well as a reduction of signal intensity. This observation was confirmed with immunofluorescence and electron microscopy imaging, showing diminished UNC45 signal and disorganization of myosin and z-disk proteins. Concomitant alterations in both synaptic physiology and locomotor function were also found. Both nerve-stimulated response and spontaneous vesicle release were negatively affected, while larval movement was impaired. CONCLUSIONS: This study highlights the dependency of normal sarcomere structure on UNC45 expression. We confirm the known role of UNC45 for myosin localization and further show the I-Z-I complex is also disrupted. This suggests a broad need for UNC45 to maintain sarcomere integrity. Newly discovered changes in synaptic physiology reveal the likely presence of a homeostatic response to partially maintain synaptic strength and muscle function.


Assuntos
Larva/metabolismo , Chaperonas Moleculares/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo , Animais , Drosophila , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Microscopia Eletrônica , Chaperonas Moleculares/genética , Miosinas/química
19.
J Biophotonics ; 13(4): e201960167, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31975533

RESUMO

Polarization-resolved second-harmonic generation (P-SHG) microscopy is a technique capable of characterizing nonlinear optical properties of noncentrosymmetric biomaterials by extracting the nonlinear susceptibility tensor components ratio χzzz2'/χzxx2' , with z-axis parallel and x-axis perpendicular to the C6 symmetry axis of molecular fiber, such as a myofibril or a collagen fiber. In this paper, we present two P-SHG techniques based on incoming and outgoing circular polarization states for a fast extraction of χzzz2'/χzxx2' : A dual-shot configuration where the SHG circular anisotropy generated using incident right- and left-handed circularly-polarized light is measured; and a single-shot configuration for which the SHG circular anisotropy is measured using only one incident circular polarization state. These techniques are used to extract the χzzz2'/χzxx2' of myosin fibrils in the body wall muscles of Drosophila melanogaster larva. The results are in good agreement with values obtained from the double Stokes-Mueller polarimetry. The dual- and single-shot circular anisotropy measurements can be used for fast imaging that is independent of the in-plane orientation of the sample. They can be used for imaging of contracting muscles, or for high throughput imaging of large sample areas.


Assuntos
Drosophila melanogaster , Miosinas , Microscopia de Geração do Segundo Harmônico , Animais , Microscopia de Polarização , Músculos
20.
Biomed Opt Express ; 11(4): 1851-1863, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32341852

RESUMO

Polarimetric second-harmonic generation (P-SHG) microscopy is used to quantify the structural alteration of collagen in stage-I,-II and -III non-small cell lung carcinoma (NSCLC) ex vivo tissue. The achiral and chiral molecular second-order susceptibility tensor components ratios (R and C, respectively), the degree of linear polarization (DLP) and the in-plane collagen fiber orientation (δ) were extracted. Further, texture analysis was performed on the SHG intensity, R, C, DLP and δ. The distributions of R, C, DLP and δ as well as the textural features of entropy, correlation and contrast show significant differences between normal and tumor tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA