Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35807528

RESUMO

Pharmaceutical excipients should not interact with active substances, however, in practice, they sometimes do it, affecting the efficacy, stability and safety of drugs. Thus, interactions between active substances and excipients are not desirable. For this reason, two component mixtures of oral antidiabetic drug linagliptin (LINA) with four excipients of different reactivity, i.e., lactose (LAC), mannitol (MAN), magnesium stearate (MGS) and polyvinylpyrrolidone (PVP), were prepared in a solid state. A high temperature and a high humidity of 60 °C and 70% RH, respectively, were applied as stressors in order to accelerate the potential interactions between LINA and excipients. Differential scanning calorimetry (DSC) as well as Fourier transform infrared (FT-IR) and near infrared (NIR) spectroscopy were used to estimate the changes due to potential interactions. In addition, chemometric computation of the data with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to adequately interpret the findings. Of the excipients used in the present experiment, all of them were not inert in relation to LINA. Some of the interactions were shown without any stressing, whereas others were observed under high-temperature/high-humidity conditions. Thus, it could be concluded that selection of appropriate excipients for LINA is very important question to minimize its degradation, especially when new types of formulations with LINA are being developed and manufactured.


Assuntos
Excipientes , Linagliptina , Varredura Diferencial de Calorimetria , Quimiometria , Análise por Conglomerados , Estabilidade de Medicamentos , Excipientes/química , Análise de Fourier , Humanos , Hipoglicemiantes , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
2.
Mol Pharm ; 15(9): 4202-4213, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30081640

RESUMO

Amphotericin B is a lifesaving polyene antibiotic used in the treatment of systemic mycoses. Unfortunately, the pharmacological applicability of this drug is limited because of its severe toxic side effects. At the same time, the lack of a well-defined mechanism of selectivity hampers the efforts to rationally design safer derivatives. As the drug primarily targets the biomembranes of both fungi and humans, new insights into the binding of amphotericin B to lipid membranes can be helpful in unveiling the molecular mechanisms underlying both its pharmacological activity and toxicity. We use fluorescence-lifetime-imaging microscopy combined with fluorescence-emission spectroscopy in the microscale to study the interaction of amphotericin B with single lipid bilayers, using model systems based on giant unilamellar liposomes formed with three lipids: dipalmitoylphosphatidylcholine (DPPC), dimirystoylphosphatidylcholine (DMPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC). The results show that amphotericin B introduced into the water phase as a DMSO solution binds to the membrane as dimers and small-molecular aggregates that we identify as tetramers and trimers. Fluorescence-detected linear-dichroism measurements revealed high orientational freedom of all the molecular-organization forms with respect to the membrane plane, which suggests that the drug partially binds to the membrane surface. The presence of sterols in the lipid phase (cholesterol but particularly ergosterol at 30 mol %) promotes the penetration of drug molecules into the lipid membrane, as concluded on the basis of the decreased orientation angle of amphotericin B molecules with respect to the axis normal to the membrane plane. Moreover, ergosterol facilitates the association of amphotericin B dimers into aggregated structures that can play a role in membrane destabilization or permeabilization. The presence of cholesterol inhibits the formation of small aggregates in the lipid phase of liposomes, making this system a promising candidate for a low-toxicity antibiotic-delivery system. Our conclusions are supported with molecular simulations that reveal the conformational properties of AmB oligomers in both aqueous solution and lipid bilayers of different compositions.


Assuntos
Anfotericina B/química , Antifúngicos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química
3.
Biomolecules ; 13(3)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979509

RESUMO

Human tissues must be elastic, much like other materials that work under continuous loads without losing functionality. The elasticity of tissues is provided by elastin, a unique protein of the extracellular matrix (ECM) of mammals. Its function is to endow soft tissues with low stiffness, high and fully reversible extensibility, and efficient elastic-energy storage. Depending on the mechanical functions, the amount and distribution of elastin-rich elastic fibers vary between and within tissues and organs. The article presents a concise overview of the mechanical properties of elastin and its role in the elasticity of soft tissues. Both the occurrence of elastin and the relationship between its spatial arrangement and mechanical functions in a given tissue or organ are overviewed. As elastin in tissues occurs only in the form of elastic fibers, the current state of knowledge about their mechanical characteristics, as well as certain aspects of degradation of these fibers and their mechanical performance, is presented. The overview also outlines the latest understanding of the molecular basis of unique physical characteristics of elastin and, in particular, the origin of the driving force of elastic recoil after stretching.


Assuntos
Elastina , Animais , Humanos , Matriz Extracelular/metabolismo , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA