Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009079

RESUMO

Fertilizer application in rice farming is an essential requirement. Most of the high-yielding varieties which are extensively grown throughout the country require recommended levels of fertilizers to obtain their potential yields. However, effective, and efficient ways of fertilizer application are of utmost importance. Coated fertilizers are used to reduce leaching nutrients and improve the efficiency of fertilizer. However, conventional coated fertilizers such as Sulphur coated urea and urea super granules are not popular among rice farmers in Sri Lanka owing to the high cost. Mixing urea-coated rice husk biochar causes a slow release of nitrogen fertilizer. This coated fertilizer and rice straw compost reduction the cost of importations of nitrogen-based fertilizers per unit area of cultivation. The study aimed to evaluate the effects of rice husk biochar coated urea and anaerobically digested rice straw compost on the soil fertility, and the cyclic effect of phosphorus. Concerning the pot experiment, rice grain yield was significantly higher in Rice husk biochar coated urea, triple super phosphate (TSP), and muriate of potash (MOP) with anaerobically digested rice straw compost. The lowest yield was observed in the control. The release of phosphate shows a cycle effect which is an important finding. Rice husk biochar coated urea can potentially be used as a slow-releasing nitrogen fertilizer. In addition, the urea coated with biochar is less costly and contributes to mitigating pollution of water bodies by inorganic fertilizers (NPK).

2.
Waste Manag ; 25(10): 997-1003, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16112563

RESUMO

An outdoor pilot-scale study was undertaken to pretreat municipal solid waste by windrow composting. The raw waste was introduced to active composting without any source separation or pulverization. Pretreatment indicators were developed and used as a tool to measure the optimum level of sorting and waste stabilization. The moisture content of the waste dropped from 68% to 61% and the pile attained a thermophilic temperature in one week. It was observed that the C/N ratio, pH profile and temperature gradients were comparable to that of traditional windrow composting. Within one week of active bulk composting, the easily degradable organic matter was consumed and there was a significant reduction in the bulk volume of the mixed waste. The pre-composted wastes were then sorted into four fractions. Compared to the initial untreated waste, the pretreated waste showed greater sorting efficiency and reduced volatile solids. A 1-m(3) cage was used to study pile settlement and volume reduction. The results indicate that pretreatment by bulk composting could reduce by approximately 40% the total mass of waste hauled to landfill sites in developing countries.


Assuntos
Bactérias Aeróbias/metabolismo , Países em Desenvolvimento , Eliminação de Resíduos/métodos , Solo , Biodegradação Ambiental , Carbono/análise , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA